scholarly journals Novel Pan-Genomic Analysis Approach in Target Selection for Multiplex PCR Identification and Detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia Complex Species: a Proof-of-Concept Study

2010 ◽  
Vol 49 (3) ◽  
pp. 814-821 ◽  
Author(s):  
C.-C. Ho ◽  
C. C. Y. Lau ◽  
P. Martelli ◽  
S.-Y. Chan ◽  
C. W. S. Tse ◽  
...  
Author(s):  
Nawarat Somprasong ◽  
Jinhee Yi ◽  
Carina M. Hall ◽  
Jessica R. Webb ◽  
Jason W. Sahl ◽  
...  

Burkholderia cepacia complex (Bcc) and Burkholderia pseudomallei complex (Bpc) species include pathogens that are typically multidrug resistant. Dominant intrinsic and acquired multidrug resistance mechanisms are efflux mediated by pumps of the resistance nodulation cell division (RND) family. From comparative bioinformatic and, in many instances, functional studies we infer that RND pump-based resistance mechanisms are conserved in Burkholderia . We propose to use these findings as a foundation for adoption of a uniform RND efflux pump nomenclature.


2019 ◽  
Vol 6 (2) ◽  
Author(s):  
Georgina Meza-Radilla ◽  
Ausel Mendez-Canarios ◽  
Juan Xicohtencatl-Cortes ◽  
Marcos R Escobedo-Guerra ◽  
Alfredo G Torres ◽  
...  

Abstract Burkholderia pseudomallei and Burkholderia cepacia complex are poorly studied in Mexico. The genotypic analysis of 38 strains isolated from children with pneumonia were identified and showed that both Burkholderia groups were present in patients. From our results, it is plausible to suggest that new species are among the analyzed strains.


2010 ◽  
Vol 59 (1) ◽  
pp. 41-47 ◽  
Author(s):  
David P. AuCoin ◽  
Reva B. Crump ◽  
Peter Thorkildson ◽  
Dana E. Nuti ◽  
John J. LiPuma ◽  
...  

The genus Burkholderia includes many bacteria that cause serious human infections. As is the case with other Gram-negative bacteria, Burkholderia species produce LPS, which is an abundant component of the bacterial cell surface. Burkholderia cepacia complex (Bcc) bacteria (which include at least 17 separate species) produce LPS structures that are quite different. In an attempt to determine the degree of LPS epitope variation among Bcc species, a mAb was produced, designated 5D8, specific for the LPS of B. cepacia. Western blot analysis determined that mAb 5D8 was able to produce the classic ‘ladder pattern’ when used to probe B. cepacia and Burkholderia anthina lysates, although 5D8 did not produce this pattern with the other seven Bcc species tested. mAb 5D8 reacted with varying intensity to most but not all of the additional B. cepacia and B. anthina strains tested. Therefore, there seems to be significant epitope variation among Bcc LPS both between and within species. Additionally, mAb 5D8 reacted with a proteinase-K-sensitive 22 kDa antigen in all Bcc strains and also in a strain of Burkholderia pseudomallei.


2015 ◽  
Vol 60 (1) ◽  
pp. 348-355 ◽  
Author(s):  
Sarah Kennedy ◽  
Trevor Beaudoin ◽  
Yvonne C. W. Yau ◽  
Emma Caraher ◽  
James E. A. Zlosnik ◽  
...  

ABSTRACTPulmonary infection withBurkholderia cepaciacomplex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on matureB. cepaciacomplex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin forBurkholderia cepacia,Burkholderia multivorans, andBurkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness ofBurkholderia dolosabiofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for allBurkholderiaspecies. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml forB. cepaciaandB. dolosa(24 h) and ≥100 μg/ml forBurkholderia cenocepaciaandB. dolosa(48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of allB. cepaciacomplex species with the exception ofB. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only forB. multivoranscompared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness ofB. cepaciacomplex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.


2008 ◽  
Vol 53 (3) ◽  
pp. 876-882 ◽  
Author(s):  
Laurent Poirel ◽  
José-Manuel Rodriguez-Martinez ◽  
Patrick Plésiat ◽  
Patrice Nordmann

ABSTRACT Chromosomally encoded ß-lactamases from the Burkholderia cepacia complex species (formerly Pseudomonas cepacia) were characterized. Cloning and sequencing identified an Ambler class A ß-lactamase (PenB) from B. cenocepacia. It shares 82% amino acid identity with the PenA ß-lactamases previously identified from B. multivorans 249. Its expression was dependent upon a LysR-type regulatory protein. Its narrow-spectrum hydrolysis activity mostly included penicillins but also included expanded-spectrum cephalosporins and aztreonam at lower levels. In that study, Pen-like ß-lactamases (PenC, PenD, PenE, PenF) that shared 63 to 92% identity with PenB from B. cenocepacia were identified from other Burkholderia species. The corresponding ß-lactamase genes might be used as genetic tools for accurate Burkholderia species identification.


Sign in / Sign up

Export Citation Format

Share Document