scholarly journals Conservation of resistance nodulation cell division efflux pump mediated antibiotic resistance in Burkholderia cepacia complex and Burkholderia pseudomallei complex species

Author(s):  
Nawarat Somprasong ◽  
Jinhee Yi ◽  
Carina M. Hall ◽  
Jessica R. Webb ◽  
Jason W. Sahl ◽  
...  

Burkholderia cepacia complex (Bcc) and Burkholderia pseudomallei complex (Bpc) species include pathogens that are typically multidrug resistant. Dominant intrinsic and acquired multidrug resistance mechanisms are efflux mediated by pumps of the resistance nodulation cell division (RND) family. From comparative bioinformatic and, in many instances, functional studies we infer that RND pump-based resistance mechanisms are conserved in Burkholderia . We propose to use these findings as a foundation for adoption of a uniform RND efflux pump nomenclature.

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104986 ◽  
Author(s):  
Sung-Pin Tseng ◽  
Wan-Chi Tsai ◽  
Chih-Yuan Liang ◽  
Yin-Shiou Lin ◽  
Jun-Wei Huang ◽  
...  

2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


2017 ◽  
Vol 63 (10) ◽  
pp. 857-863 ◽  
Author(s):  
Maria S. Stietz ◽  
Christina Lopez ◽  
Osasumwen Osifo ◽  
Marcelo E. Tolmasky ◽  
Silvia T. Cardona

There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.


2019 ◽  
Vol 6 (2) ◽  
Author(s):  
Georgina Meza-Radilla ◽  
Ausel Mendez-Canarios ◽  
Juan Xicohtencatl-Cortes ◽  
Marcos R Escobedo-Guerra ◽  
Alfredo G Torres ◽  
...  

Abstract Burkholderia pseudomallei and Burkholderia cepacia complex are poorly studied in Mexico. The genotypic analysis of 38 strains isolated from children with pneumonia were identified and showed that both Burkholderia groups were present in patients. From our results, it is plausible to suggest that new species are among the analyzed strains.


Antibiotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 119 ◽  
Author(s):  
Carole Ayoub Moubareck ◽  
Dalal Hammoudi Halat

Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.


2014 ◽  
Vol 58 (10) ◽  
pp. 6151-6156 ◽  
Author(s):  
Lindsey E. Nielsen ◽  
Erik C. Snesrud ◽  
Fatma Onmus-Leone ◽  
Yoon I. Kwak ◽  
Ricardo Avilés ◽  
...  

ABSTRACTTigecycline nonsusceptibility is concerning because tigecycline is increasingly relied upon to treat carbapenem- or colistin-resistant organisms. InEnterobacteriaceae, tigecycline nonsusceptibility is mediated by the AcrAB-TolC efflux pump, among others, and pump activity is often a downstream effect of mutations in their transcriptional regulators, cognate repressor genes, or noncoding regions, as demonstrated inEnterobacteriaceaeandAcinetobacterisolates. Here, we report the emergence of tigecycline nonsusceptibility in a longitudinal series of multidrug-resistant (MDR) and extensively drug-resistant (XDR)Klebsiella pneumoniaeisolates collected during tigecycline therapy and the elucidation of its resistance mechanisms. Clinical isolates were recovered prior to and during tigecycline therapy of a 2.5-month-old Honduran neonate. Antimicrobial susceptibility tests to tigecycline determined that the MIC increased from 1 to 4 μg/ml prior to the completion of tigecycline therapy. Unlike other studies, we did not find increased expression oframA,ramR,oqxA,acrB,marA, orrarAgenes by reverse transcription-quantitative PCR (qRT-PCR). Whole-genome sequencing revealed an IS5insertion element in nonsusceptible isolates 85 bp upstream of a putative efflux pump operon, here namedkpgABC, previously unknown to be involved in resistance. Introduction of thekpgABCgenes in a non-kpgABCbackground increased the MIC of tigecycline 4-fold and is independent of a functional AcrAB-TolC pump. This is the first report to propose a function forkpgABCand identify an insertion element whose presence correlated with thein vivodevelopment of tigecycline nonsusceptibility inK. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document