scholarly journals Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae

2016 ◽  
Vol 54 (8) ◽  
pp. 2074-2081 ◽  
Author(s):  
Valentina Donà ◽  
Sara Kasraian ◽  
Agnese Lupo ◽  
Yuvia N. Guilarte ◽  
Christoph Hauser ◽  
...  

Resistance to antibiotics used againstNeisseria gonorrhoeaeinfections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences forN. gonorrhoeaeidentification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterizedN. gonorrhoeaestrains, 19 commensalNeisseriaspecies strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identifiedN. gonorrhoeaeand the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcalNeisseriaspecies, and the detection limit was 103to 104genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.

2015 ◽  
Vol 53 (12) ◽  
pp. 3935-3937 ◽  
Author(s):  
Daniel Golparian ◽  
Stina Boräng ◽  
Martin Sundqvist ◽  
Magnus Unemo

The new BD Max GC real-time PCR assay showed high clinical and analytical sensitivity and specificity. It can be an effective and accurate supplementary test for the BD ProbeTec GC Qx amplified DNA assay, which had suboptimal specificity, and might also be used for initial detection ofNeisseria gonorrhoeae.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Valentina Donà ◽  
Joost H. Smid ◽  
Sara Kasraian ◽  
Dianne Egli-Gany ◽  
Ferah Dost ◽  
...  

ABSTRACT Molecular methods are often used for Neisseria gonorrhoeae detection, but complete definition of antimicrobial resistance (AMR) patterns still requires phenotypic tests. We developed an assay that both identifies N. gonorrhoeae and detects AMR determinants in clinical specimens. We designed a mismatch amplification mutation assay (MAMA)-based SYBR green real-time PCR targeting one N. gonorrhoeae-specific region (opa); mosaic penA alleles (Asp345 deletion [Asp345del], Gly545Ser) associated with decreased susceptibility to cephalosporins; and alterations conferring resistance to ciprofloxacin (GyrA Ser91Phe), azithromycin (23S rRNA A2059G and C2611T), and spectinomycin (16S rRNA C1192T). We applied the real-time PCR to 489 clinical specimens, of which 94 had paired culture isolates, and evaluated its performance by comparison with the performance of commercial diagnostic molecular and phenotypic tests. Our assay exhibited a sensitivity/specificity of 93%/100%, 96%/85%, 90%/91%, 100%/100%, and 100%/90% for the detection of N. gonorrhoeae directly from urethral, rectal, pharyngeal, cervical, and vaginal samples, respectively. The MAMA strategy allowed the detection of AMR mutations by comparing cycle threshold values with the results of the reference opa reaction. The method accurately predicted the phenotype of resistance to four antibiotic classes, as determined by comparison with the MIC values obtained from 94 paired cultures (sensitivity/specificity for cephalosporins, azithromycin, ciprofloxacin, and spectinomycin resistance, 100%/95%, 100%/100%, 100%/100%, and not applicable [NA]/100%, respectively, in genital specimens and NA/72%, NA/98%, 100%/97%, and NA/96%, respectively, in extragenital specimens). False-positive results, particularly for the penA Asp345del reaction, were observed predominantly in pharyngeal specimens. Our real-time PCR assay is a promising rapid method to identify N. gonorrhoeae and predict AMR directly in genital specimens, but further optimization for extragenital specimens is needed.


2017 ◽  
Vol 55 (11) ◽  
pp. 3201-3209 ◽  
Author(s):  
Sumudu R. Perera ◽  
Nurul H. Khan ◽  
Irene Martin ◽  
Ali Taheri ◽  
Rajinder P. Parti ◽  
...  

ABSTRACTA real-time PCR (RT-PCR) assay was designed for the simultaneous identification ofNeisseria gonorrhoeaeand its ciprofloxacin susceptibility status. A SYBR green-based multiplex RT-PCR format was used; it comprised two different forward primers and a common reverse primer to detect single nucleotide polymorphisms (SNPs) ingyrAofN. gonorrhoeae. The primer pairs were evaluated for their sensitivity and specificity using genomic DNA from 254N. gonorrhoeaeisolates (82 were ciprofloxacin susceptible and 172 were ciprofloxacin resistant) and 23 non-N. gonorrhoeaespecies isolates. The performance of the primers was validated using genomic DNA from 100 differentN. gonorrhoeaeisolates (46 were ciprofloxacin susceptible and 54 were ciprofloxacin resistant) and 52 non-N. gonorrhoeaeisolates. The latter panel was revalidated by testing 99 (46 isolates were ciprofloxacin susceptible and 53 isolates were ciprofloxacin resistant) of theN. gonorrhoeaeisolates and 23 non-N. gonorrhoeaeisolates. These primers detectedN. gonorrhoeaeand its ciprofloxacin susceptibility status with over 99% sensitivity and specificity for all panels tested. This assay has the potential to be an inexpensive and rapid test for the simultaneous identification ofN. gonorrhoeaeand its ciprofloxacin susceptibility status.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
L. Bernal-Martínez ◽  
H. Gil ◽  
O. Rivero-Menéndez ◽  
S. Gago ◽  
M. Cuenca-Estrella ◽  
...  

ABSTRACT The global emergence of azole-resistant Aspergillus fumigatus strains is a growing public health concern. Different patterns of azole resistance are linked to mutations in cyp51A. Therefore, accurate characterization of the mechanisms underlying azole resistance is critical to guide selection of the most appropriate antifungal agent for patients with aspergillosis. This study describes a new sequencing-free molecular screening tool for early detection of the most frequent mutations known to be associated with azole resistance in A. fumigatus. PCRs targeting cyp51A mutations at positions G54, Y121, G448, and M220 and targeting different tandem repeats (TRs) in the promoter region were designed. All PCRs were performed simultaneously, using the same cycling conditions. Amplicons were then distinguished using a high-resolution melting assay. For standardization, 30 well-characterized azole-resistant A. fumigatus strains were used, yielding melting curve clusters for different resistance mechanisms for each target and allowing detection of the most frequent azole resistance mutations, i.e., G54E, G54V, G54R, G54W, Y121F, M220V, M220I, M220T, M220K, and G448S, and the tandem repeats TR34, TR46, and TR53. Validation of the method was performed using a blind panel of 80 A. fumigatus azole-susceptible or azole-resistant strains. All strains included in the blind panel were properly classified as susceptible or resistant with the developed method. The implementation of this screening method can reduce the time needed for the detection of azole-resistant A. fumigatus isolates and therefore facilitate selection of the best antifungal therapy in patients with aspergillosis.


2012 ◽  
Vol 10 (3) ◽  
pp. 329-334 ◽  
Author(s):  
D.M. Valero-Hervás ◽  
P. Morales ◽  
M.J. Castro ◽  
P. Varela ◽  
M. Castillo-Rama ◽  
...  

“Slow” and “Fast” C3 complement variants (C3S and C3F) result from a g.304C>G polymorphism that changes arginine to glycine at position 102. C3 variants are associated with complement-mediated diseases and outcome in transplantation. In this work C3 genotyping is achieved by a Real Time PCR - High Resolution Melting (RT-PCR-HRM) optimized method. In an analysis of 49 subjects, 10.2% were C3FF, 36.7% were C3SF and 53.1% were C3SS. Allelic frequencies (70% for C3S and 30% for C3F) were in Hardy-Weinberg equilibrium and similar to those published previously. When comparing RT-PCR-HRM with the currently used Tetraprimer-Amplification Refractory Mutation System PCR (T-ARMS-PCR), coincidence was 93.8%. The procedure shown here includes a single primer pair and low DNA amount per reaction. Detection of C3 variants by RT-PCR-HRM is accurate, easy, fast and low cost, and it may be the method of choice for C3 genotyping.


2016 ◽  
Vol 37 (21) ◽  
pp. 2734-2741 ◽  
Author(s):  
Santiago Ginart ◽  
Mariela Caputo ◽  
Evguenia Alechine ◽  
Daniel Corach ◽  
Andrea Sala

2016 ◽  
Vol 54 (3) ◽  
pp. 805-808 ◽  
Author(s):  
P. Hemarajata ◽  
S. Yang ◽  
O. O. Soge ◽  
R. M. Humphries ◽  
J. D. Klausner

In the United States, 19.2% ofNeisseria gonorrhoeaeisolates are resistant to ciprofloxacin. We evaluated a real-time PCR assay to predict ciprofloxacin susceptibility using residual DNA from the Roche Cobas 4800 CT/NG assay. The results of the assay were 100% concordant with agar dilution susceptibility test results for 100 clinical isolates. Among 76 clinical urine and swab specimens positive forN. gonorrhoeaeby the Cobas assay, 71% could be genotyped. The test took 1.5 h to perform, allowing the physician to receive results in time to make informed clinical decisions.


Sign in / Sign up

Export Citation Format

Share Document