scholarly journals Identification by 16S rRNA Gene Analyses of a Potential Novel Mycobacterial Species as an Etiological Agent of Canine Leproid Granuloma Syndrome

2000 ◽  
Vol 38 (3) ◽  
pp. 953-959 ◽  
Author(s):  
M. S. Hughes ◽  
G. James ◽  
N. Ball ◽  
M. Scally ◽  
R. Malik ◽  
...  

PCR amplifications of the 16S rRNA gene were performed on 46 specimens obtained from 43 dogs with canine leproid granuloma syndrome to help determine its etiology. Sequence capture PCR was applied to 37 paraffin-embedded specimens from 37 dogs, and nested PCR was attempted on DNA from 9 fresh tissue specimens derived from 3 of the 37 aforementioned dogs and from an additional 6 dogs. Molecular analyses of the paraffin-embedded tissues and fresh tissue specimen analyses were performed at separate institutions. PCR products with identical sequences over a 350-bp region encompassing variable regions 2 and 3 of the 16S rRNA gene were obtained from 4 of 37 paraffin-embedded specimens and from all 9 specimens of fresh tissue originating from 12 of the 43 dogs. Identical sequences were determined from amplicons obtained from paraffin-embedded and fresh specimens from one dog. The consensus DNA sequence, amplified from paraffin-embedded tissue and represented by GenBank accession no. AF144747, shared highest nucleotide identity (99.4% over 519 bp) with mycobacterial strain IWGMT 90413 but did not correspond exactly to any EMBL or GenBank database sequence. With a probe derived from the V2 region of the novel canine sequence, reverse cross blot hybridization identified an additional four paraffin-embedded specimens containing the same novel sequence. In total, molecular methodologies identified the proposed novel mycobacterial sequence in 16 of 43 dogs with canine leproid granuloma syndrome, indicating that the species represented by this sequence may be the principal etiological agent of canine leproid granuloma syndrome.

2002 ◽  
Vol 68 (8) ◽  
pp. 3818-3829 ◽  
Author(s):  
Christopher Rösch ◽  
Alexander Mergel ◽  
Hermann Bothe

ABSTRACT Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd 1-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a few PCR products can be selected at random, the data suggest that denitrification and N2 fixation are not genetic traits of most of the uncultured bacteria.


2017 ◽  
Author(s):  
Garold Fuks ◽  
Michael Elgart ◽  
Amnon Amir ◽  
Amit Zeisel ◽  
Peter J. Turnbaugh ◽  
...  

AbstractBackgroundMost of our knowledge about the remarkable microbial diversity on Earth comes from sequencing the 16S rRNA gene. The use of next-generation sequencing methods has increased sample number and sequencing depth, but the read length of the most widely used sequencing platforms today is quite short, requiring the researcher to choose a subset of the gene to sequence (typically 16-33% of the total length). Thus, many bacteria may share the same amplified region and the resolution of profiling is inherently limited. Platforms that offer ultra long read lengths, whole genome shotgun sequencing approaches, and computational frameworks formerly suggested by us and by others, all allow different ways to circumvent this problem yet suffer various shortcomings. There is need for a simple and low cost 16S rRNA gene based profiling approach that harnesses the short read length to provide a much larger coverage of the gene to allow for high resolution, even in harsh conditions of low bacterial biomass and fragmented DNA.ResultsThis manuscript suggests Short MUltiple Regions Framework (SMURF), a method to combine sequencing results from different PCR-amplified regions to provide one coherent profiling. The de facto amplicon length is the total length of all amplified regions, thus providing much higher resolution compared to current techniques. Computationally, the method solves a convex optimization problem that allows extremely fast reconstruction and requires only moderate memory. We demonstrate the increase in resolution by in silico simulations and by profiling two mock mixtures and real-world biological samples. Reanalyzing a mock mixture from the Human Microbiome Project achieved about two-fold improvement in resolution when combing two independent regions. Using a custom set of six primer pairs spanning about 1200bp (80%) of the 16S rRNA gene we were able to achieve ~100 fold improvement in resolution compared to a single region, over a mock mixture of common human gut bacterial isolates. Finally, profiling of a Drosophila melanogaster microbiome using the set of six primer pairs provided a ~100 fold increase in resolution, and thus enabling efficient downstream analysis.ConclusionsSMURF enables identification of near full-length 16S rRNA gene sequences in microbial communities, having resolution superior compared to current techniques. It may be applied to standard sample preparation protocols with very little modifications. SMURF also paves the way to high-resolution profiling of low-biomass and fragmented DNA, e.g., in the case of Formalin-fixed and Paraffin-embedded samples, fossil-derived DNA or DNA exposed to other degrading conditions. The approach is not restricted to combining amplicons of the 16S rRNA gene and may be applied to any set of amplicons, e.g., in Multilocus Sequence Typing (MLST).


2014 ◽  
Author(s):  
Catherine Burke ◽  
Aaron E Darling

We describe a method for sequencing full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform. The resulting sequences have about 100-fold higher accuracy than standard Illumina reads and are chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. We demonstrate that the data provides fine scale phylogenetic resolution not available from Illumina amplicon methods targeting smaller variable regions of the 16S rRNA gene.


2003 ◽  
Vol 185 (24) ◽  
pp. 7241-7246 ◽  
Author(s):  
Leo M. Schouls ◽  
Corrie S. Schot ◽  
Jan A. Jacobs

ABSTRACT The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shao-shuai Yu ◽  
Yuan Wu ◽  
Wei wei Song

Melochia corchorifolia L. is a plant belonging to the family Sterculiaceae, extracts from this plant have been reported to inhibit melanogenesis (Yuan et al., 2020). During September to November 2020, the plants showing abnormal symptoms including witches’-broom, leaf chlorosis, leaflet and internode shortening (Fig.1), were found in Dingan county of Hainan province, China, with about 50% infection rates in the field. The disease symptoms were suspected to be caused by the phytoplasma, a plant pathogenic prokaryotes that could not be cultured in vitro. Aiming to confirm the pathogen causing the symptoms, total DNA of the symptomatic or asymptomatic Melochia corchorifolia samples were extracted by CTAB method (Doyle and Doyle, 1990) using 0.10 g fresh plant leaves using the rapid extraction kit for plant genomic DNA (CTAB Plant Genome DNA Rapid Extraction Kit, Aidlab Biotechnologies Co., Ltd, Beijing, China). PCR reactions were performed using primers R16mF2/R16mR1 (Gundersen and Lee, 1996) specific for phytoplasma 16S rRNA gene fragments. PCR products of phytoplasma 16S rRNA gene sequences were obtained from the ten symptomatic plant samples but not from the DNA of the asymptomatic plant samples. The PCR products were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Shanghai, China) and the data were deposited in GenBank. The sequences of 16S rRNA gene fragments amplified from the DNA extracted from the disease plant samples were all identical, with a length of 1336 bp for the 16S rRNA (GenBank accession: MZ353520). Nucleotide Blast search based on the 16S rRNA gene fragment of the phytoplasma strain showed 100% sequence identities with that of 16SrII peanut witches’-broom group members, such as Cassava witches’-broom phytoplasma (KM280679), Cleome sp. phytoplasma (KM280677), Tephrosia purpurea witches’-broom phytoplasma (MW616560), Desmodium triflorum little leaf phytoplasma (MT452308) and Peanut witches’-broom phytoplasma (JX403944). Analysis of the 16S rRNA gene sequence of McWB-hnda strain by interactive online phytoplasma classification tool iPhyClassifier (Zhao et al., 2009) indicated that the phytoplasma strain is a member of 16SrII-V subgroup. The phytoplasma strain was named as Melochia corchorifolia witches’-broom (McWB) phytoplasma, McWB-hnda strain. Phylogenetic analysis performed by MEGA 7.0 employing neighbor-joining (NJ) method with 1000 bootstrap value (Kumar et al., 2016) indicated that the McWB-hnda phytoplasma strain was clustered into one clade with the phytoplasma strains of Tephrosia purpurea witches’-broom, Cleome sp., Peanut witches’-broom, Cassava witches’-broom and Desmodium triflorum little leaf with 97 % bootstrap value (Fig.2); McWB-hnda phytoplasma strain identified in the study and Melochia corchorifolia phyllody phytoplasma strain (KX150461) belonging to 16SrI-B subgroup previously identified in the Hainan Island of China by Chen et al. (2017) are in two independent clades(Fig.2). To our knowledge, this is the first report of a 16SrII-V subgroup phytoplasma associated with Melochia corchorifolia witches’-broom disease in Hainan Province, a tropical island of China. The phytoplasma strain identified in the study was relatively close to 16SrII peanut witches’-broom group phytoplasma strains associated with witches’-broom or little leaf diseases in the plants like Peanut, Tephrosia purpurea, Cassava and Desmodium triflorum. Our finding in the study indicated that Melochia corchorifolia may act as an alternative natural host not only for 16SrI-B subgroup phytoplasma but also for 16SrII-V subgroup phytoplasma, which would contribute to the spreading of the related phytoplasma diseases.


Author(s):  
Jessica L. O’Callaghan ◽  
Dana Willner ◽  
Melissa Buttini ◽  
Flavia Huygens ◽  
Elise S. Pelzer

The endometrial cavity is an upper genital tract site previously thought as sterile, however, advances in culture-independent, next-generation sequencing technology have revealed that this low-biomass site harbors a rich microbial community which includes multiple Lactobacillus species. These bacteria are considered to be the most abundant non-pathogenic genital tract commensals. Next-generation sequencing of the female lower genital tract has revealed significant variation amongst microbial community composition with respect to Lactobacillus sp. in samples collected from healthy women and women with urogenital conditions. The aim of this study was to evaluate our ability to characterize members of the genital tract microbial community to species-level taxonomy using variable regions of the 16S rRNA gene. Samples were interrogated for the presence of microbial DNA using next-generation sequencing technology that targets the V5–V8 regions of the 16S rRNA gene and compared to speciation using qPCR. We also performed re-analysis of published data using alternate variable regions of the 16S rRNA gene. In this analysis, we explore next-generation sequencing of clinical genital tract isolates as a method for high throughput identification to species-level of key Lactobacillus sp. Data revealed that characterization of genital tract taxa is hindered by a lack of a consensus protocol and 16S rRNA gene region target allowing comparison between studies.


1998 ◽  
Vol 36 (2) ◽  
pp. 462-466 ◽  
Author(s):  
Joanne B. Messick ◽  
Linda M. Berent ◽  
Sandra K. Cooper

The 16S rRNA gene of Haemobartonella felis was amplified by using universal eubacterial primers and was subsequently cloned and sequenced. Based on this sequence data, we designed a set ofH. felis-specific primers. These primers selectively amplified a 1,316-bp DNA fragment of the 16S rRNA gene of H. felis from each of four experimentally infected cats at peak parasitemia. No PCR product was amplified from purified DNA ofEperythrozoon suis, Mycoplasma genitalium, andBartonella bacilliformis. Blood from the experimental cats prior to infection was negative for PCR products and was greatly diminished or absent 1 month after doxycycline treatment. The overall sequence identity of this fragment varied by less than 1.0% among experimentally infected cats. By taking into consideration the secondary structure of the 16S rRNA molecule, we were able to further verify the alignment of nucleotides and quality of our sequence data. In this PCR assay, the minimum detectable number of H. felis organisms was determined to be between 50 and 704. The potential usefulness of restriction enzymes DdeI andMnlI for distinguishing H. felis from closely related bacteria was examined. This is the first report of the utility of PCR-facilitated diagnosis and discrimination of H. felisinfection in cats.


Sign in / Sign up

Export Citation Format

Share Document