scholarly journals Epidemiology and Clinical Course of Burkholderia cepacia Complex Infections, Particularly Those Caused by Different Burkholderia cenocepacia Strains, among Patients Attending an Italian Cystic Fibrosis Center

2004 ◽  
Vol 42 (4) ◽  
pp. 1491-1497 ◽  
Author(s):  
G. Manno ◽  
C. Dalmastri ◽  
S. Tabacchioni ◽  
P. Vandamme ◽  
R. Lorini ◽  
...  
2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Vidya P. Narayanaswamy ◽  
Andrew P. Duncan ◽  
John J. LiPuma ◽  
William P. Wiesmann ◽  
Shenda M. Baker ◽  
...  

ABSTRACT Burkholderia cepacia complex (Bcc) lung infections in cystic fibrosis (CF) patients are often associated with a steady decline in lung function and death. The formation of biofilms and inherent multidrug resistance are virulence factors associated with Bcc infection and contribute to increased risk of mortality in CF patients. New therapeutic strategies targeting bacterial biofilms are anticipated to enhance antibiotic penetration and facilitate resolution of infection. Poly (acetyl, arginyl) glucosamine (PAAG) is a cationic glycopolymer therapeutic being developed to directly target biofilm integrity. In this study, 13 isolates from 7 species were examined, including Burkholderia multivorans, Burkholderia cenocepacia, Burkholderia gladioli, Burkholderia dolosa, Burkholderia vietnamiensis, and B. cepacia. These isolates were selected for their resistance to standard clinical antibiotics and their ability to form biofilms in vitro. Biofilm biomass was quantitated using static tissue culture plate (TCP) biofilm methods and a minimum biofilm eradication concentration (MBEC) assay. Confocal laser scanning microscopy (CLSM) visualized biofilm removal by PAAG during treatment. Both TCP and MBEC methods demonstrated a significant dose-dependent relationship with regard to biofilm removal by 50 to 200 μg/ml PAAG following a 1-h treatment (P < 0.01). A significant reduction in biofilm thickness was observed following a 10-min treatment of Bcc biofilms with PAAG compared to that with vehicle control (P < 0.001) in TCP, MBEC, and CLSM analyses. PAAG also rapidly permeabilizes bacteria within the first 10 min of treatment. Glycopolymers, such as PAAG, are a new class of large-molecule therapeutics that support the treatment of recalcitrant Bcc biofilm.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Tania Wrobel Folescu ◽  
Claudia Henrique da Costa ◽  
Renata Wrobel Folescu Cohen ◽  
Orlando Carlos da Conceição Neto ◽  
Rodolpho Mattos Albano ◽  
...  

2016 ◽  
Vol 84 (5) ◽  
pp. 1424-1437 ◽  
Author(s):  
Siobhán McClean ◽  
Marc E. Healy ◽  
Cassandra Collins ◽  
Stephen Carberry ◽  
Luke O'Shaughnessy ◽  
...  

Members of theBurkholderia cepaciacomplex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species:Burkholderia cenocepacia, the most virulent, andB. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species.Escherichia colistrains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responsesin vivo. Mice immunized with either recombinant linocin or OmpW were protected fromB. cenocepaciaandB. multivoranschallenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens.


2015 ◽  
Vol 60 (1) ◽  
pp. 348-355 ◽  
Author(s):  
Sarah Kennedy ◽  
Trevor Beaudoin ◽  
Yvonne C. W. Yau ◽  
Emma Caraher ◽  
James E. A. Zlosnik ◽  
...  

ABSTRACTPulmonary infection withBurkholderia cepaciacomplex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on matureB. cepaciacomplex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin forBurkholderia cepacia,Burkholderia multivorans, andBurkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness ofBurkholderia dolosabiofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for allBurkholderiaspecies. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml forB. cepaciaandB. dolosa(24 h) and ≥100 μg/ml forBurkholderia cenocepaciaandB. dolosa(48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of allB. cepaciacomplex species with the exception ofB. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only forB. multivoranscompared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness ofB. cepaciacomplex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.


2014 ◽  
Vol 82 (11) ◽  
pp. 4729-4745 ◽  
Author(s):  
Ute Schwab ◽  
Lubna H. Abdullah ◽  
Olivia S. Perlmutt ◽  
Daniel Albert ◽  
C. William Davis ◽  
...  

ABSTRACTThe localization ofBurkholderia cepaciacomplex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection withPseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc andP. aeruginosabacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallelin vitroexperiments examined the growth of two Bcc species,Burkholderia cenocepaciaandBurkholderia multivorans, in environments similar to those occupied byP. aeruginosain the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast,P. aeruginosawas identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions withP. aeruginosain an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions,B. cenocepaciaandB. multivoransused fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence ofP. aeruginosain vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade aP. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibitP. aeruginosabiofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages.


2008 ◽  
Vol 14 (1) ◽  
pp. 5-26 ◽  
Author(s):  
Susana Correia ◽  
Catarina Nascimento ◽  
Luísa Pereira ◽  
Mónica V. Cunha ◽  
Isabel Sá-Correia ◽  
...  

2004 ◽  
Vol 53 (7) ◽  
pp. 663-668 ◽  
Author(s):  
Andrew McDowell ◽  
Eshwar Mahenthiralingam ◽  
Kerstin E.A. Dunbar ◽  
John E. Moore ◽  
Mary Crowe ◽  
...  

Studies of the prevalence of Burkholderia cepacia complex species amongst cystic fibrosis (CF) patients in different geographical regions, and the association between cross-infection and putative transmissibility markers, will further our understanding of these organisms and help to address infection-control issues. In this study, B. cepacia complex isolates from CF patients in different regions of Europe were analysed. Isolates were examined for B. cepacia complex species and putative transmissibility markers [cable pilin subunit gene (cblA) and the B. cepacia epidemic strain marker (BCESM)]. Sporadic and cross-infective strains were identified by random amplification of polymorphic DNA (RAPD). In total, 79 % of patients were infected with Burkholderia cenocepacia (genomovar III), 18 % with Burkholderia multivorans (genomovar II) and less than 5 % of patients with B. cepacia (genomovar I), Burkholderia stabilis (genomovar IV) or Burkholderia vietnamiensis (genomovar V). The cblA and BCESM transmissibility markers were only detected in strains of B. cenocepacia. The BCESM was a more sensitive marker for transmissible B. cenocepacia strains than cblA, although sporadic B. cenocepacia strains containing the BCESM, but lacking cblA, were also observed. Furthermore, clusters of cross-infection with transmissibility marker-negative strains of B. multivorans were identified. In conclusion, B. cenocepacia was the greatest cause of cross-infection, and the most widely distributed B. cepacia complex species, within these CF populations. However, cross-infection was not exclusive to B. cenocepacia and cblA and the BCESM were not absolute markers for transmissible B. cenocepacia, or other B. cepacia complex strains. It is therefore suggested that CF centres cohort patients based on the presence or absence of B. cepacia complex infection and not on the basis of transmissibility marker-positive B. cenocepacia as previously suggested.


2013 ◽  
Vol 31 (10) ◽  
pp. 665-668 ◽  
Author(s):  
Laura Barrado ◽  
M. Teresa Martinez ◽  
Jennifer Villa ◽  
M. Ángeles Orellana ◽  
Esther Viedma ◽  
...  

2002 ◽  
Vol 70 (5) ◽  
pp. 2715-2720 ◽  
Author(s):  
Karen K. Chu ◽  
Donald J. Davidson ◽  
T. Keith Halsey ◽  
Jacqueline W. Chung ◽  
David P. Speert

ABSTRACT Cystic fibrosis patients infected with strains from different genomovars of the Burkholderia cepacia complex can experience diverse clinical outcomes. To identify genomovar-specific determinants that might be responsible for these differences, we developed a pulmonary model of infection in BALB/c mice. Mice were rendered leukopenic by administration of cyclophosphamide prior to intranasal challenge with 1.6 × 104 bacteria. Five of six genomovar II strains persisted at stable numbers in the lungs until day 16 with minimal toxicity, whereas zero of seven genomovar III strains persisted but resulted in variable toxicity. We have developed a chronic pulmonary model of B. cepacia infection which reveals differences among genomovars in terms of clinical infection outcome.


Sign in / Sign up

Export Citation Format

Share Document