scholarly journals Secretion of Nonstructural Protein 1 of Dengue Virus from Infected Mosquito Cells: Facts and Speculations

2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Ana C. Alcalá ◽  
Laura A. Palomares ◽  
Juan E. Ludert

ABSTRACTDengue virus nonstructural protein 1 (NS1) is a multifunctional glycoprotein. For decades, the notion in the field was that NS1 is secreted exclusively from vertebrate cells and not from mosquito cells. However, recent evidence shows that mosquito cells also secrete NS1 efficiently. In this review, we discuss the evidence for secretion of NS1 of dengue virus, and of other flaviviruses, from mosquito cells, differences between NS1 secreted from mosquito and NS1 secreted from vertebrate cells, and possible roles of soluble NS1 in the insect flavivirus vector.

2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Romel Rosales Ramirez ◽  
Juan E. Ludert

ABSTRACTDengue virus (DENV) is a mosquito-borne virus of the familyFlaviviridae. The RNA viral genome encodes three structural and seven nonstructural proteins. Nonstructural protein 1 (NS1) is a multifunctional protein actively secreted in vertebrate and mosquito cells during infection. In mosquito cells, NS1 is secreted in a caveolin-1-dependent manner by an unconventional route. The caveolin chaperone complex (CCC) is a cytoplasmic complex formed by caveolin-1 and the chaperones FKBP52, Cy40, and CyA and is responsible for the cholesterol traffic inside the cell. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 associates with and relies on the CCC for secretion. Treatment of mosquito cells with classic secretion inhibitors, such as brefeldin A, Golgicide A, and Fli-06, showed no effect on NS1 secretion but significant reductions in recombinant luciferase secretion and virion release. Silencing the expression of CAV-1 or FKBP52 with short interfering RNAs or the inhibition of CyA by cyclosporine resulted in significant decrease in NS1 secretion, again without affecting virion release. Colocalization, coimmunoprecipitation, and proximity ligation assays indicated that NS1 colocalizes and interacts with all proteins of the CCC. In addition, CAV-1 and FKBP52 expression was found augmented in DENV-infected cells. Results obtained with Zika virus-infected cells suggest that in mosquito cells, ZIKV NS1 follows the same secretory pathway as that observed for DENV NS1. These results uncover important differences in the dengue virus-cell interactions between the vertebrate host and the mosquito vector as well as novel functions for the chaperone caveolin complex.IMPORTANCEThe dengue virus protein NS1 is secreted efficiently from both infected vertebrate and mosquito cells. Previously, our group reported that NS1 secretion in mosquito cells follows an unconventional secretion pathway dependent on caveolin-1. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 secretion takes place in association with the chaperone caveolin complex, a complex formed by caveolin-1 and the chaperones FKBP52, CyA, and Cy40, which are in charge of cholesterol transport inside the cell. Results obtained with ZIKV-infected mosquito cells suggest that ZIKV NS1 is released following an unconventional secretory route in association with the chaperone caveolin complex. These results uncover important differences in the virus-cell interactions between the vertebrate host and the mosquito vector, as well as novel functions for the chaperone caveolin complex. Moreover, manipulation of the NS1 secretory route may prove a valuable strategy to combat these two mosquito-borne diseases.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1393
Author(s):  
Thanyaporn Dechtawewat ◽  
Sittiruk Roytrakul ◽  
Yodying Yingchutrakul ◽  
Sawanya Charoenlappanit ◽  
Bunpote Siridechadilok ◽  
...  

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


2010 ◽  
Vol 33 (6) ◽  
pp. e75-e80 ◽  
Author(s):  
Yang Xiao-meng ◽  
Jiang Li-fang ◽  
Tang Yun-xia ◽  
Yin Yue ◽  
Liu Wen-quan ◽  
...  

2019 ◽  
Vol 202 (4) ◽  
pp. 1153-1162 ◽  
Author(s):  
Diego A. Espinosa ◽  
P. Robert Beatty ◽  
Gabrielle L. Reiner ◽  
Kelsey E. Sivick ◽  
Laura Hix Glickman ◽  
...  

2014 ◽  
Vol 99 (3) ◽  
pp. 1191-1203 ◽  
Author(s):  
Caio Roberto Soares Bragança ◽  
Lívia Tavares Colombo ◽  
Alvaro Soares Roberti ◽  
Mariana Caroline Tocantins Alvim ◽  
Silvia Almeida Cardoso ◽  
...  

2009 ◽  
Vol 234 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Hsien-Jen Cheng ◽  
Chiou-Feng Lin ◽  
Huan-Yao Lei ◽  
Hsiao-Sheng Liu ◽  
Trai-Ming Yeh ◽  
...  

2006 ◽  
Vol 52 (8) ◽  
pp. 1486-1491 ◽  
Author(s):  
Dar-Fu Tai ◽  
Chung-Yin Lin ◽  
Tzong-Zeng Wu ◽  
Jyh-Hsiung Huang ◽  
Pei-Yun Shu

Abstract Background: Because of the range and nonspecificity of clinical presentations of dengue virus infections, we felt there was a need to create diagnostic tests. We used artificial receptors for the virus to develop serologic assays to detect dengue virus infection. Methods: We coated a quartz crystal microbalance (QCM) with molecularly imprinted polymers specific for nonstructural protein 1 of flavivirus. These artificial receptors were specifically created on a QCM chip by polymerization of monomers and were cross-linked in the presence of the epitope site of nonstructural protein 1. We tested serum samples from patients with confirmed cases of dengue reported to the Center for Disease Control in Taipei. Samples were diluted 100-fold; no other sample pretreatment was used. The QCM response was compared with results of monoclonal ELISA. Results: QCM signals were >15 Hz in 18 of 21 (86%) of dengue samples and in 0 of 16 control samples. The correlation (r2) of the QCM response and the ELISA result was 0.73. Within-run and run-to-run imprecisions (CV) were 4%–28% and 10%–32%, respectively. Conclusions: The described assay offers a serologic technique for diagnosis of early viremia. The results illustrate the potential of well-organized polymers on the highly sensitive sensor system for diagnostic and biotechnological applications.


Sign in / Sign up

Export Citation Format

Share Document