scholarly journals Adenovirus E1B 55-Kilodalton Protein Targets SMARCAL1 for Degradation during Infection and Modulates Cellular DNA Replication

2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Reshma Nazeer ◽  
Fadi S. I. Qashqari ◽  
Abeer S. Albalawi ◽  
Ann Liza Piberger ◽  
Maria Teresa Tilotta ◽  
...  

ABSTRACT Here, we show that the cellular DNA replication protein and ATR substrate SMARCAL1 is recruited to viral replication centers early during adenovirus infection and is then targeted in an E1B-55K/E4orf6- and cullin RING ligase-dependent manner for proteasomal degradation. In this regard, we have determined that SMARCAL1 is phosphorylated at S123, S129, and S173 early during infection in an ATR- and CDK-dependent manner, and that pharmacological inhibition of ATR and CDK activities attenuates SMARCAL1 degradation. SMARCAL1 recruitment to viral replication centers was shown to be largely dependent upon SMARCAL1 association with the RPA complex, while Ad-induced SMARCAL1 phosphorylation also contributed to SMARCAL1 recruitment to viral replication centers, albeit to a limited extent. SMARCAL1 was found associated with E1B-55K in adenovirus E1-transformed cells. Consistent with its ability to target SMARCAL1, we determined that E1B-55K modulates cellular DNA replication. As such, E1B-55K expression initially enhances cellular DNA replication fork speed but ultimately leads to increased replication fork stalling and the attenuation of cellular DNA replication. Therefore, we propose that adenovirus targets SMARCAL1 for degradation during infection to inhibit cellular DNA replication and promote viral replication. IMPORTANCE Viruses have evolved to inhibit cellular DNA damage response pathways that possess antiviral activities and utilize DNA damage response pathways that possess proviral activities. Adenovirus has evolved, primarily, to inhibit DNA damage response pathways by engaging with the ubiquitin-proteasome system and promoting the degradation of key cellular proteins. Adenovirus differentially regulates ATR DNA damage response signaling pathways during infection. The cellular adenovirus E1B-55K binding protein E1B-AP5 participates in ATR signaling pathways activated during infection, while adenovirus 12 E4orf6 negates Chk1 activation by promoting the proteasome-dependent degradation of the ATR activator TOPBP1. The studies detailed here indicate that adenovirus utilizes ATR kinase and CDKs during infection to promote the degradation of SMARCAL1 to attenuate normal cellular DNA replication. These studies further our understanding of the relationship between adenovirus and DNA damage and cell cycle signaling pathways during infection and establish new roles for E1B-55K in the modulation of cellular DNA replication.

2008 ◽  
Vol 82 (17) ◽  
pp. 8362-8372 ◽  
Author(s):  
Seema S. Lakdawala ◽  
Rachel A. Schwartz ◽  
Kevin Ferenchak ◽  
Christian T. Carson ◽  
Brian P. McSharry ◽  
...  

ABSTRACT Adenoviruses (Ad) with the early region E4 deleted (E4-deleted virus) are defective for DNA replication and late protein synthesis. Infection with E4-deleted viruses results in activation of a DNA damage response, accumulation of cellular repair factors in foci at viral replication centers, and joining together of viral genomes into concatemers. The cellular DNA repair complex composed of Mre11, Rad50, and Nbs1 (MRN) is required for concatemer formation and full activation of damage signaling through the protein kinases Ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR). The E4orf3 and E4orf6 proteins expressed from the E4 region of Ad type 5 (Ad5) inactivate the MRN complex by degradation and mislocalization, and prevent the DNA damage response. Here we investigated individual contributions of the MRN complex, concatemer formation, and damage signaling to viral DNA replication during infection with E4-deleted virus. Using virus mutants, short hairpin RNA knockdown and hypomorphic cell lines, we show that inactivation of MRN results in increased viral replication. We demonstrate that defective replication in the absence of E4 is not due to concatemer formation or DNA damage signaling. The C terminus of Nbs1 is required for the inhibition of Ad DNA replication and recruitment of MRN to viral replication centers. We identified regions of Nbs1 that are differentially required for concatemer formation and inhibition of Ad DNA replication. These results demonstrate that targeting of the MRN complex explains the redundant functions of E4orf3 and E4orf6 in promoting Ad DNA replication. Understanding how MRN impacts the adenoviral life cycle will provide insights into the functions of this DNA damage sensor.


2005 ◽  
Vol 79 (13) ◽  
pp. 8243-8248 ◽  
Author(s):  
Sara Klucking ◽  
Asha S. Collins ◽  
John A. T. Young

ABSTRACT The cytopathic effect (CPE) seen with some subgroups of avian sarcoma and leukosis virus (ASLV) is associated with viral Env activation of the death-promoting activity of TVB (a tumor necrosis factor receptor-related receptor that is most closely related to mammalian TNF-related apoptosis-inducing ligand [TRAIL] receptors) and with viral superinfection leading to unintegrated viral DNA (UVD) accumulation, which is presumed to activate a cellular DNA damage response. In this study, we employed cells that express signaling-deficient ASLV receptors to demonstrate that an ASLV CPE can be uncoupled from the death-promoting functions of the TVB receptor. However, these cell-killing events were associated with much higher levels of viral superinfection and DNA accumulation than those seen when the virus used signaling-competent TVB receptors. These findings suggest that a putative cellular DNA damage response that is activated by UVD accumulation might act in concert with the death-signaling pathways activated by Env-TVB interactions to trigger cell death. Such a model is consistent with the well-established synergy that exists between TRAIL-signaling pathways and DNA damage responses which is currently being exploited in cancer therapy regimens.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 723-723
Author(s):  
Alexandra Sobeck ◽  
Stacie Stone ◽  
Bendert deGraaf ◽  
Vincenzo Costanzo ◽  
Johan deWinter ◽  
...  

Abstract Fanconi anemia (FA) is a genetic disorder characterized by hypersensitivity to DNA crosslinking agents and diverse clinical symptoms, including developmental anomalies, progressive bone marrow failure, and predisposition to leukemias and other cancers. FA is genetically heterogeneous, resulting from mutations in any of at least eleven different genes. The FA proteins function together in a pathway composed of a mulitprotein core complex that is required to trigger the DNA-damage dependent activation of the downstream FA protein, FANCD2. This activation is thought to be the key step in a DNA damage response that functionally links FA proteins to major breast cancer susceptibility proteins BRCA1 and BRCA2 (BRCA2 is FA gene FANCD1). The essential function of the FA proteins is unknown, but current models suggest that FA proteins function at the interface between cell cycle checkpoints, DNA repair and DNA replication, and are likely to play roles in the DNA damage response during S phase. To provide a platform for dissecting the key functional events during S-phase, we developed cell-free assays for FA proteins based on replicating extracts from Xenopus eggs. We identified the Xenopus homologs of human FANCD2 (xFANCD2) and several of the FA core complex proteins (xCCPs), and biochemically characterized these proteins in replicating cell-free extracts. We found that xCCPs and a modified isoform of xFANCD2 become associated with chromatin during normal and disrupted DNA replication. Blocking initiation of replication with geminin demonstrated that association of xCCPs and xFANCD2 with chromatin occurs in a strictly replication-dependent manner that is enhanced following DNA damage by crosslinking agents or by addition of aphidicolin, an inhibitor of replicative DNA polymerases. In addition, chromatin binding of xFANCD2, but not xBRCA2, is abrogated when xFANCA is quantitatively depleted from replicating extracts suggesting that xFANCA promotes the loading of xFANCD2 on chromatin. The chromatin-association of xFANCD2 and xCCPs is diminished in the presence of caffeine, an inhibitor of checkpoint kinases. Taken together, our data suggest a model in which the ordered loading of FA proteins on chromatin is required for processing a subset of DNA replication-blocking lesions that are resolved during late stages of replication.


2012 ◽  
Vol 443 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Rebecca M. Jones ◽  
Eva Petermann

Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2444
Author(s):  
Tareq Abualfaraj ◽  
Nafiseh Chalabi Hagkarim ◽  
Robert Hollingworth ◽  
Laura Grange ◽  
Satpal Jhujh ◽  
...  

The adenovirus 12 early region 1B55K (Ad12E1B55K) protein has long been known to cause non-random damage to chromosomes 1 and 17 in human cells. These sites, referred to as Ad12 modification sites, have marked similarities to classic fragile sites. In the present report we have investigated the effects of Ad12E1B55K on the cellular DNA damage response and on DNA replication, considering our increased understanding of the pathways involved. We have compared human skin fibroblasts expressing Ad12E1B55K (55K+HSF), but no other viral proteins, with the parental cells. Appreciable chromosomal damage was observed in 55K+HSFs compared to parental cells. Similarly, an increased number of micronuclei was observed in 55K+HSFs, both in cycling cells and after DNA damage. We compared DNA replication in the two cell populations; 55K+HSFs showed increased fork stalling and a decrease in fork speed. When replication stress was introduced with hydroxyurea the percentage of stalled forks and replication speeds were broadly similar, but efficiency of fork restart was significantly reduced in 55K+HSFs. After DNA damage, appreciably more foci were formed in 55K+HSFs up to 48 h post treatment. In addition, phosphorylation of ATM substrates was greater in Ad12E1B55K-expressing cells following DNA damage. Following DNA damage, 55K+HSFs showed an inability to arrest in cell cycle, probably due to the association of Ad12E1B55K with p53. To confirm that Ad12E1B55K was targeting components of the double-strand break repair pathways, co-immunoprecipitation experiments were performed which showed an association of the viral protein with ATM, MRE11, NBS1, DNA-PK, BLM, TOPBP1 and p53, as well as with components of the replisome, MCM3, MCM7, ORC1, DNA polymerase δ, TICRR and cdc45, which may account for some of the observed effects on DNA replication. We conclude that Ad12E1B55K impacts the cellular DNA damage response pathways and the replisome at multiple points through protein–protein interactions, causing genomic instability.


2020 ◽  
Author(s):  
Claire D. James ◽  
Dipon Das ◽  
Ethan L. Morgan ◽  
Raymonde Otoa ◽  
Andrew Macdonald ◽  
...  

AbstractHuman papillomaviruses recruit a host of DNA damage response factors to their viral genome to facilitate homologous recombination replication in association with the viral replication factors E1 and E2. We previously demonstrated that SIRT1 deacetylation of WRN promotes recruitment of WRN to E1-E2 replicating DNA, and that WRN regulates both the levels and fidelity of E1-E2 replication. The deacetylation of WRN by SIRT1 results in an active protein able to complex with replicating DNA, but a protein that is less stable. Here we demonstrate an inverse correlation between SIRT1 and WRN in CIN cervical lesions when compared with normal control tissue, supporting our model of SIRT1 deacetylation destabilizing WRN protein. We CRISPR/Cas9 edited N/Tert-1 and N/Tert-1+HPV16 cells to knock out WRN protein expression and subjected the cells to organotypic raft cultures. In N/Tert-1 cells without WRN expression there was enhanced basal cell proliferation, DNA damage and thickening of the differentiated epithelium. In N/Tert-1+HPV16 cells, there was enhanced basal cell proliferation, increased DNA damage throughout the epithelium and increased viral DNA replication. Overall, the results demonstrate that the expression of WRN is required to control the proliferation of N/Tert-1 cells and controls the HPV16 life cycle in these cells. This complements our previous data demonstrating that WRN controls the levels and fidelity of HPV16 E1-E2 DNA replication. The results describe a new role for WRN, a tumor suppressor, in controlling keratinocyte differentiation and the HPV16 life cycle.ImportanceHPV16 is the major human viral carcinogen, responsible for around 3-4% of all cancers worldwide. Our understanding of how the viral replication machinery interacts with host factors to control/activate the DNA damage response to promote the viral life cycle remains incomplete. Recently, we demonstrated a SIRT1-WRN axis that controls HPV16 replication and here we demonstrate that this axis persists in clinical cervical lesions induced by HPV16. Here we describe the effects of WRN depletion on cellular differentiation with and without HPV16; WRN depletion results in enhanced proliferation and DNA damage irrespective of HPV16 status. Also, WRN is a restriction factor for the viral life cycle as replication is disrupted in the absence of WRN. Future studies will focus on enhancing our understanding of how WRN regulates viral replication. Our goal is to ultimately identify cellular factors essential for HPV16 replication that can be targeted for therapeutic gain.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Claire D. James ◽  
Dipon Das ◽  
Ethan L. Morgan ◽  
Raymonde Otoa ◽  
Andrew Macdonald ◽  
...  

ABSTRACT Human papillomaviruses recruit a host of DNA damage response factors to their viral genome to facilitate homologous recombination replication in association with the viral replication factors E1 and E2. We previously demonstrated that SIRT1 deacetylation of WRN promotes recruitment of WRN to E1-E2 replicating DNA and that WRN regulates both the levels and fidelity of E1-E2 replication. The deacetylation of WRN by SIRT1 results in an active protein able to complex with replicating DNA, but a protein that is less stable. Here, we demonstrate an inverse correlation between SIRT1 and WRN in CIN cervical lesions compared to normal control tissue, supporting our model of SIRT1 deacetylation destabilizing WRN protein. We CRISPR/Cas9 edited N/Tert-1 and N/Tert-1+HPV16 cells to knock out WRN protein expression and subjected the cells to organotypic raft cultures. In N/Tert-1 cells without WRN expression, there was enhanced basal cell proliferation, DNA damage, and thickening of the differentiated epithelium. In N/Tert-1+HPV16 cells, there was enhanced basal cell proliferation, increased DNA damage throughout the epithelium, and increased viral DNA replication. Overall, the results demonstrate that the expression of WRN is required to control the proliferation of N/Tert-1 cells and controls the HPV16 life cycle in these cells. This complements our previous data demonstrating that WRN controls the levels and fidelity of HPV16 E1-E2 DNA replication. The results describe a new role for WRN, a tumor suppressor, in controlling keratinocyte differentiation and the HPV16 life cycle. IMPORTANCE HPV16 is the major human viral carcinogen, responsible for around 3 to 4% of all cancers worldwide. Our understanding of how the viral replication machinery interacts with host factors to control/activate the DNA damage response to promote the viral life cycle remains incomplete. Recently, we demonstrated a SIRT1-WRN axis that controls HPV16 replication, and here we demonstrate that this axis persists in clinical cervical lesions induced by HPV16. Here, we describe the effects of WRN depletion on cellular differentiation with or without HPV16; WRN depletion results in enhanced proliferation and DNA damage irrespective of HPV16 status. Also, WRN is a restriction factor for the viral life cycle since replication is disrupted in the absence of WRN. Future studies will focus on enhancing our understanding of how WRN regulates viral replication. Our goal is to ultimately identify cellular factors essential for HPV16 replication that can be targeted for therapeutic gain.


2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Wei Zou ◽  
Zekun Wang ◽  
Min Xiong ◽  
Aaron Yun Chen ◽  
Peng Xu ◽  
...  

ABSTRACTHuman parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication.IMPORTANCEHuman parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly associated with the replicating single-stranded DNA viral genome and played a critical role in viral DNA replication. In contrast, the DNA damage response-induced phosphorylated forms of RPA32 were dispensable for viral DNA replication.


2006 ◽  
Vol 8 (5) ◽  
pp. 1-11 ◽  
Author(s):  
Alison Sinclair ◽  
Sarah Yarranton ◽  
Celine Schelcher

Many viruses, with distinct replication strategies, activate DNA-damage response pathways, including the lentivirus human immunodeficiency virus (HIV) and the DNA viruses Epstein–Barr virus (EBV), herpes simplex virus 1, adenovirus and SV40. DNA-damage response pathways involving DNA-dependent protein kinase, ataxia-telengiectasia mutated (ATM) and ‘ataxia-telengiectasia and Rad3-related’ (ATR) have all been implicated. This review focuses on the effects of HIV and EBV replication on DNA repair pathways. It has been suggested that activation of cellular DNA repair and recombination enzymes is beneficial for viral replication, as illustrated by the ability of suppressors of the ATM and ATR family to inhibit HIV replication. However, activation of DNA-damage response pathways can also promote apoptosis. Viruses can tailor the cellular response by suppressing downstream signalling from DNA-damage sensors, as exemplified by EBV. New small-molecule inhibitors of the DNA-damage response pathways could therefore be of value to treat viral infections.


Sign in / Sign up

Export Citation Format

Share Document