scholarly journals Ebola Virus VP35 Antagonizes PKR Activity through Its C-Terminal Interferon Inhibitory Domain

2009 ◽  
Vol 83 (17) ◽  
pp. 8993-8997 ◽  
Author(s):  
Michael Schümann ◽  
Thorsten Gantke ◽  
Elke Mühlberger

ABSTRACT Ebola virus VP35 contains a C-terminal cluster of basic amino acids required for double-stranded RNA (dsRNA) binding and inhibition of interferon regulatory factor 3 (IRF3). VP35 also blocks protein kinase R (PKR) activation; however, the responsible domain has remained undefined. Here we show that the IRF inhibitory domain of VP35 mediates the inhibition of PKR and enhances the synthesis of coexpressed proteins. In contrast to dsRNA binding and IRF inhibition, alanine substitutions of at least two basic amino acids are required to abrogate PKR inhibition and enhanced protein expression. Moreover, we show that PKR activation is not only blocked but reversed by Ebola virus infection.

2008 ◽  
Vol 55 (3) ◽  
pp. 473-478
Author(s):  
Nie Fa-Hui ◽  
Yao Hai-Feng ◽  
Qi Rui-Feng ◽  
Li Xin ◽  
Wu Cai-Bin

Human STAU1 is one member of the family of double-stranded RNA (dsRNA)-binding proteins. It is thought to function in transporting mRNA, controlling translation and eliciting mRNA decay in neurons, and to function in infection of influenza virus and human immunodeficiency virus type 1 (HIV-1). Four transcripts coding two isoforms have been identified before. In this study, we have isolated a novel transcript of STAU1, coding a novel isoform that has six amino acids more (SFPLKQ) than isoform a. In order to examine the tissue distribution of this novel isoform, we have performed RT-PCR experiments and the analysis showed that it was highly expressed in heart, liver, kidney and pancreas.


2019 ◽  
Vol 37 (1) ◽  
pp. 349-375 ◽  
Author(s):  
Sun Hur

Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.


2010 ◽  
Vol 84 (6) ◽  
pp. 3004-3015 ◽  
Author(s):  
Kathleen C. Prins ◽  
Sebastien Delpeut ◽  
Daisy W. Leung ◽  
Olivier Reynard ◽  
Valentina A. Volchkova ◽  
...  

ABSTRACT Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-α/β responses that also functions as a viral polymerase cofactor. Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-α/β production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that loss of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.


Biochemistry ◽  
2007 ◽  
Vol 46 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Jason W. Ucci ◽  
Yumiko Kobayashi ◽  
Gregory Choi ◽  
Andrei T. Alexandrescu ◽  
James L. Cole

2006 ◽  
Vol 80 (11) ◽  
pp. 5168-5178 ◽  
Author(s):  
Washington B. Cárdenas ◽  
Yueh-Ming Loo ◽  
Michael Gale ◽  
Amy L. Hartman ◽  
Christopher R. Kimberlin ◽  
...  

ABSTRACT The Ebola virus (EBOV) VP35 protein blocks the virus-induced phosphorylation and activation of interferon regulatory factor 3 (IRF-3), a transcription factor critical for the induction of alpha/beta interferon (IFN-α/β) expression. However, the mechanism(s) by which this blockage occurs remains incompletely defined. We now provide evidence that VP35 possesses double-stranded RNA (dsRNA)-binding activity. Specifically, VP35 bound to poly(rI) · poly(rC)-coated Sepharose beads but not control beads. In contrast, two VP35 point mutants, R312A and K309A, were found to be greatly impaired in their dsRNA-binding activity. Competition assays showed that VP35 interacted specifically with poly(rI) · poly(rC), poly(rA) · poly(rU), or in vitro-transcribed dsRNAs derived from EBOV sequences, and not with single-stranded RNAs (ssRNAs) or double-stranded DNA. We then screened wild-type and mutant VP35s for their ability to target different components of the signaling pathways that activate IRF-3. These experiments indicate that VP35 blocks activation of IRF-3 induced by overexpression of RIG-I, a cellular helicase recently implicated in the activation of IRF-3 by either virus or dsRNA. Interestingly, the VP35 mutants impaired for dsRNA binding have a decreased but measurable IFN antagonist activity in these assays. Additionally, wild-type and dsRNA-binding-mutant VP35s were found to have equivalent abilities to inhibit activation of the IFN-β promoter induced by overexpression of IPS-1, a recently identified signaling molecule downstream of RIG-I, or by overexpression of the IRF-3 kinases IKKε and TBK-1. These data support the hypothesis that dsRNA binding may contribute to VP35 IFN antagonist function. However, additional mechanisms of inhibition, at a point proximal to the IRF-3 kinases, most likely also exist.


2008 ◽  
Vol 83 (4) ◽  
pp. 1790-1799 ◽  
Author(s):  
Stephanie J. Child ◽  
Adam P. Geballe

ABSTRACT Many viruses have evolved mechanisms to evade the repression of translation mediated by protein kinase R (PKR). In the case of murine cytomegalovirus (MCMV), the protein products of two essential genes, m142 and m143, bind to double-stranded RNA (dsRNA) and block phosphorylation of PKR and eukaryotic initiation factor 2α. A distinctive feature of MCMV is that two proteins are required to block PKR activation whereas other viral dsRNA-binding proteins that prevent PKR activation contain all the necessary functions in a single protein. In order to better understand the mechanism by which MCMV evades the PKR response, we investigated the associations of pm142 and pm143 with each other and with PKR. Both pm142 and pm143 interact with PKR in infected and transfected cells. However, the ∼200-kDa pm142-pm143 complex that forms in these cells does not contain substantial amounts of PKR, suggesting that the interactions between pm142-pm143 and PKR are unstable or transient. The stable, soluble pm142-pm143 complex appears to be a heterotetramer consisting of two molecules of pm142 associated with each other, and each one binds to and stabilizes a monomer of pm143. MCMV infection also causes relocalization of PKR into the nucleus and to an insoluble cytoplasmic compartment. These results suggest a model in which the pm142-pm143 multimer interacts with PKR and causes its sequestration in cellular compartments where it is unable to shut off translation and repress viral replication.


2007 ◽  
Vol 81 (7) ◽  
pp. 3554-3562 ◽  
Author(s):  
Takeshi Noda ◽  
Shinji Watanabe ◽  
Hiroshi Sagara ◽  
Yoshihiro Kawaoka

ABSTRACT Expression of Ebola virus nucleoprotein (NP) in mammalian cells leads to the formation of helical structures, which serve as a scaffold for the nucleocapsid. We recently found that NP binding with the matrix protein VP40 is important for nucleocapsid incorporation into virions (T. Noda, H. Ebihara, Y. Muramoto, K. Fujii, A. Takada, H. Sagara, J. H. Kim, H. Kida, H. Feldmann, and Y. Kawaoka, PLoS Pathog. 2:e99, 2006). To identify the region(s) on the NP molecule required for VP40 binding, we examined the interaction of a series of NP deletion mutants with VP40 biochemically and ultrastructurally. We found that both termini of NP (amino acids 2 to 150 and 601 to 739) are essential for its interaction with VP40 and for its incorporation into virus-like particles (VLPs). We also found that the C terminus of NP is important for nucleocapsid incorporation into virions. Of interest is that the formation of NP helices, which involves the N-terminal 450 amino acids of NP, is dispensable for NP incorporation into VLPs. These findings enhance our understanding of Ebola virus assembly and in so doing move us closer to the identification of targets for the development of antiviral compounds to combat Ebola virus infection.


1999 ◽  
Vol 73 (4) ◽  
pp. 3491-3496 ◽  
Author(s):  
Brian H. Harcourt ◽  
Anthony Sanchez ◽  
Margaret K. Offermann

ABSTRACT Ebola virus infection is highly lethal and leads to severe immunosuppression. In this study, we demonstrate that infection of human umbilical vein endothelial cells (HUVECs) with Ebola virus Zaire (EZ) suppressed basal expression of the major histocompatibility complex class I (MHC I) family of proteins and inhibited the induction of multiple genes by alpha interferon (IFN-α) and IFN-γ, including those coding for MHC I proteins, 2′-5′ oligoadenylate synthetase [2′-5′(A)N], and IFN regulatory factor 1 (IRF-1). Induction of interleukin-6 (IL-6) and ICAM-1 by IL-1β was not suppressed by infection with EZ, suggesting that the inhibition of IFN signaling is specific. Gel shift analysis demonstrated that infection with EZ blocked the induction by IFNs of nuclear proteins that bind to IFN-stimulated response elements, gamma activation sequences, and IFN regulatory factor binding site (IRF-E). In contrast, infection with EZ did not block activation of the transcription factor NF-κB by IL-1β. The events that lead to the blockage of IFN signaling may be critical for Ebola virus-induced immunosuppression and would play a role in the pathogenesis of Ebola virus infection.


2006 ◽  
Vol 80 (23) ◽  
pp. 11667-11677 ◽  
Author(s):  
Bianca Dauber ◽  
Jana Schneider ◽  
Thorsten Wolff

ABSTRACT Expression of alpha/beta interferon (IFN-α/β) in virus-infected vertebrate cells is a key event in the establishment of a sustained antiviral response, which is triggered by double-stranded RNA (dsRNA) produced during viral replication. These antiviral cytokines initiate the expression of cellular proteins with activities that limit the replication and spread of the invading viruses. Within this response, the dsRNA-dependent protein kinase R (PKR) that is expressed at constitutive levels and upregulated by IFN-α/β acts as an important antiviral effector that can block the cellular translational machinery. We previously demonstrated that efficient replication of influenza B virus depends on the viral dsRNA-binding NS1 protein that inhibits the transcriptional activation of IFN-α/β genes. Here we tested the postulate that the viral NS1 protein counteracts antiviral responses through sequestering intracellular dsRNA by analyzing a collection of recombinant influenza B viruses. As expected, viruses expressing dsRNA-binding-defective NS1 proteins were strongly attenuated for replication in IFN-competent hosts. Interestingly, these virus mutants failed to prevent activation of PKR but could effectively limit IFN induction. Conversely, a mutant virus expressing the N-terminal dsRNA-binding domain of NS1 prevented PKR activation, but not IFN induction, suggesting an important role for the NS1 C-terminal part in silencing the activation route of IFN-α/β genes. Thus, our findings indicate an unexpected mechanistic dichotomy of the influenza B virus NS1 protein in the suppression of antiviral responses, which involves at least one activity that is largely separable from dsRNA binding.


2001 ◽  
Vol 120 (5) ◽  
pp. A142-A142
Author(s):  
J GASKEY ◽  
E SEIDEL

Sign in / Sign up

Export Citation Format

Share Document