scholarly journals Human Respiratory Syncytial Virus Glycoproteins Are Not Required for Apical Targeting and Release from Polarized Epithelial Cells

2008 ◽  
Vol 82 (17) ◽  
pp. 8664-8672 ◽  
Author(s):  
Melissa Batonick ◽  
Antonius G. P. Oomens ◽  
Gail W. Wertz

ABSTRACT Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.

2013 ◽  
Vol 94 (8) ◽  
pp. 1691-1700 ◽  
Author(s):  
Jane Tian ◽  
Kelly Huang ◽  
Subramaniam Krishnan ◽  
Catherine Svabek ◽  
Daniel C. Rowe ◽  
...  

Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that is constitutively highly expressed by type I alveolar epithelial cells. Here, we report that RAGE protected HEK cells from RSV-induced cell death and reduced viral titres in vitro. RAGE appeared to interact directly with the F protein, but, rather than inhibiting RSV entry into host cells, virus replication and budding, membrane-expressed RAGE or soluble RAGE blocked F-protein-mediated syncytium formation and sloughing. These data indicate that RAGE may contribute to protecting the lower airways from RSV by inhibiting the formation of syncytia, viral spread, epithelial damage and airway obstruction.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Miaoge Xue ◽  
Rongzhang Wang ◽  
Olivia Harder ◽  
Phylip Chen ◽  
Mijia Lu ◽  
...  

ABSTRACT Human respiratory syncytial virus (RSV) is the leading viral cause of lower respiratory tract disease in infants and children worldwide. Currently, there are no FDA-approved vaccines to combat this virus. The large (L) polymerase protein of RSV replicates the viral genome and transcribes viral mRNAs. The L protein is organized as a core ring-like domain containing the RNA-dependent RNA polymerase and an appendage of globular domains containing an mRNA capping region and a cap methyltransferase region, which are linked by a flexible hinge region. Here, we found that the flexible hinge region of RSV L protein is tolerant to amino acid deletion or insertion. Recombinant RSVs carrying a single or double deletion or a single alanine insertion were genetically stable, highly attenuated in immortalized cells, had defects in replication and spread, and had a delay in innate immune cytokine responses in primary, well-differentiated, human bronchial epithelial (HBE) cultures. The replication of these recombinant viruses was highly attenuated in the upper and lower respiratory tracts of cotton rats. Importantly, these recombinant viruses elicited high levels of neutralizing antibody and provided complete protection against RSV replication. Taken together, amino acid deletions or insertions in the hinge region of the L protein can serve as a novel approach to rationally design genetically stable, highly attenuated, and immunogenic live virus vaccine candidates for RSV. IMPORTANCE Despite tremendous efforts, there are no FDA-approved vaccines for human respiratory syncytial virus (RSV). A live attenuated RSV vaccine is one of the most promising vaccine strategies for RSV. However, it has been a challenge to identify an RSV vaccine strain that has an optimal balance between attenuation and immunogenicity. In this study, we generated a panel of recombinant RSVs carrying a single and double deletion or a single alanine insertion in the large (L) polymerase protein that are genetically stable, sufficiently attenuated, and grow to high titer in cultured cells, while retaining high immunogenicity. Thus, these recombinant viruses may be promising vaccine candidates for RSV.


2004 ◽  
Vol 78 (8) ◽  
pp. 4363-4369 ◽  
Author(s):  
Kirsten M. Spann ◽  
Kim-C. Tran ◽  
Bo Chi ◽  
Ronald L. Rabin ◽  
Peter L. Collins

ABSTRACT Wild-type human respiratory syncytial virus (HRSV) is a poor inducer of alpha/beta interferons (IFN-α/β). However, recombinant HRSV lacking the NS1 and NS2 genes (ΔNS1/2) induced high levels of IFN-α and -β in human pulmonary epithelial cells (A549) as well as in macrophages derived from primary human peripheral blood monocytes. Results with NS1 and NS2 single- and double-gene-deletion viruses indicated that the two proteins function independently as well as coordinately to achieve the full inhibitory effect, with NS1 having a greater independent role. The relative contributions of the individual NS proteins were the converse of that recently described for bovine RSV (J. F. Valarcher, J. Furze, S. Wyld, R. Cook, K. K. Conzelmann, and G. Taylor, J. Virol. 77:8426-8439, 2003). This pattern of inhibition by HRSV NS1 and NS2 also extended to the newly described antiviral cytokines IFN-λ1, -2 and -3.


Sign in / Sign up

Export Citation Format

Share Document