scholarly journals Human Plasmacytoid Dendritic Cells Elicited Different Responses after Infection with Pathogenic and Nonpathogenic Junin Virus Strains

2015 ◽  
Vol 89 (14) ◽  
pp. 7409-7413 ◽  
Author(s):  
Soledad Negrotto ◽  
Hebe A. Mena ◽  
Agustin E. Ure ◽  
Carolina Jaquenod De Giusti ◽  
Mariela Bollati-Fogolín ◽  
...  

The arenavirus Junin virus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. We characterized the JUNV infection of human peripheral blood-derived plasmacytoid dendritic cells (hpDC), demonstrating that hpDC are susceptible to infection with the C#1 strain (attenuated) and even more susceptible to infection with the P (virulent) JUNV strain. However, hpDC elicited different responses in terms of viability, activation, maturation, and cytokine expression after infection with both JUNV strains.

1983 ◽  
Vol 12 (4) ◽  
pp. 273-280 ◽  
Author(s):  
Mercedes C. Weissenbacher ◽  
Marta S. Sabattini ◽  
María M. Avila ◽  
Patricia M. Sangiorgio ◽  
María R. F. De Sensi ◽  
...  

2015 ◽  
Vol 89 (16) ◽  
pp. 8428-8443 ◽  
Author(s):  
Jessica Y. Rathbun ◽  
Magali E. Droniou ◽  
Robert Damoiseaux ◽  
Kevin G. Haworth ◽  
Jill E. Henley ◽  
...  

ABSTRACTCertain members of theArenaviridaefamily are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development.IMPORTANCEThe arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Julieta S. Roldán ◽  
Nélida A. Candurra ◽  
María I. Colombo ◽  
Laura R. Delgui

ABSTRACTJunín virus (JUNV), a member of the familyArenaviridae, is the etiological agent of Argentine hemorrhagic fever (AHF), a potentially deadly endemic-epidemic disease affecting the population of the most fertile farming land of Argentina. Autophagy is a degradative process with a crucial antiviral role; however, several viruses subvert the pathway to their benefit. We determined the role of autophagy in JUNV-infected cells by analyzing LC3, a cytoplasmic protein (LC3-I) that becomes vesicle membrane associated (LC3-II) upon induction of autophagy. Cells overexpressing enhanced green fluorescent protein (EGFP)-LC3 and infected with JUNV showed an increased number of LC3 punctate structures, similar to those obtained after starvation or bafilomycin A1 treatment, which leads to autophagosome induction or accumulation, respectively. We also monitored the conversion of LC3-I to LC3-II, observing LC3-II levels in JUNV-infected cells similar to those observed in starved cells. Additionally, we kinetically studied the number of LC3 dots after JUNV infection and found that the virus activated the pathway as early as 2 h postinfection (p.i.), whereas the UV-inactivated virus did not induce the pathway. Cells subjected to starvation or pretreated with rapamycin, a pharmacological autophagy inductor, enhanced virus yield. Also, we assayed the replication capacity of JUNV in Atg5 knockout or Beclin 1 knockdown cells (both critical components of the autophagic pathway) and found a significant decrease in JUNV replication. Taken together, our results constitute the first study indicating that JUNV infection induces an autophagic response, which is functionally required by the virus for efficient propagation.IMPORTANCEMammalian arenaviruses are zoonotic viruses that cause asymptomatic and persistent infections in their rodent hosts but may produce severe and lethal hemorrhagic fevers in humans. Currently, there are neither effective therapeutic options nor effective vaccines for viral hemorrhagic fevers caused by human-pathogenic arenaviruses, except the vaccine Candid no. 1 against Argentine hemorrhagic fever (AHF), licensed for human use in areas of endemicity in Argentina. Since arenaviruses remain a severe threat to global public health, more in-depth knowledge of their replication mechanisms would improve our ability to fight these viruses. Autophagy is a lysosomal degradative pathway involved in maintaining cellular homeostasis, representing powerful anti-infective machinery. We show, for the first time for a member of the familyArenaviridae, a proviral role of autophagy in JUNV infection, providing new knowledge in the field of host-virus interaction. Therefore, modulation of virus-induced autophagy could be used as a strategy to block arenavirus infections.


ChemInform ◽  
2011 ◽  
Vol 42 (22) ◽  
pp. no-no
Author(s):  
Jose Sebastian Barradas ◽  
Maria Ines Errea ◽  
Norma B. D'Accorso ◽  
Claudia Soledad Sepulveda ◽  
Elsa Beatriz Damonte

1994 ◽  
Vol 51 (5) ◽  
pp. 554-562 ◽  
Author(s):  
James N. Mills ◽  
C. J. Peters ◽  
James E. Childs ◽  
Kelly T. McKee ◽  
Thomas G. Ksiazek ◽  
...  

Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 459-467 ◽  
Author(s):  
Jurjen Tel ◽  
Gerty Schreibelt ◽  
Simone P. Sittig ◽  
Till S. M. Mathan ◽  
Sonja I. Buschow ◽  
...  

Abstract In human peripheral blood, 4 populations of dendritic cells (DCs) can be distinguished, plasmacytoid dendritic cells (pDCs) and CD16+, CD1c+, and BDCA-3+ myeloid DCs (mDCs), each with distinct functional characteristics. DCs have the unique capacity to cross-present exogenously encountered antigens (Ags) to CD8+ T cells. Here we studied the ability of all 4 blood DC subsets to take up, process, and present tumor Ags to T cells. Although pDCs take up less Ags than CD1c+ and BDCA3+ mDCs, pDCs induce potent Ag-specific CD4+ and CD8+ T-cell responses. We show that pDCs can preserve Ags for prolonged periods of time and on stimulation show strong induction of both MHC class I and II, which explains their efficient activation of both CD4+ and CD8+ T cells. Furthermore, pDCs cross-present soluble and cell-associated tumor Ags to cytotoxic T lymphocytes equally well as BDCA3+ mDCs. These findings, and the fact that pDCs outnumber BDCA3+ mDCs, both in peripheral blood and lymph nodes, together with their potent IFN-I production, known to activate both components of the innate and adaptive immune system, put human pDCs forward as potent activators of CD8+ T cells in antitumor responses. Our findings may therefore have important consequences for the development of antitumor immunotherapy.


Intervirology ◽  
1986 ◽  
Vol 25 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Ana M. Ambrosio ◽  
Delia A. Enria ◽  
Julio I. Maiztegui

2011 ◽  
Vol 46 (1) ◽  
pp. 259-264 ◽  
Author(s):  
José Sebastián Barradas ◽  
María Inés Errea ◽  
Norma B. D'Accorso ◽  
Claudia Soledad Sepúlveda ◽  
Elsa Beatriz Damonte

Sign in / Sign up

Export Citation Format

Share Document