scholarly journals Conserved Salt Bridge between the N- and C-Terminal Heptad Repeat Regions of the Human Immunodeficiency Virus Type 1 gp41 Core Structure Is Critical for Virus Entry and Inhibition

2008 ◽  
Vol 82 (22) ◽  
pp. 11129-11139 ◽  
Author(s):  
Yuxian He ◽  
Shuwen Liu ◽  
Jingjing Li ◽  
Hong Lu ◽  
Zhi Qi ◽  
...  

ABSTRACT The fusogenic human immunodeficiency virus type 1 (HIV-1) gp41 core structure is a stable six-helix bundle formed by its N- and C-terminal heptad repeat sequences. Notably, the negatively charged residue Asp632 located at the pocket-binding motif in the C-terminal heptad repeat interacts with the positively charged residue Lys574 in the pocket formation region of the N-terminal heptad repeat to form a salt bridge. We previously demonstrated that the residue Lys574 plays an essential role in six-helix bundle formation and virus infectivity and is a key determinant of the target for anti-HIV fusion inhibitors. In this study, the functionality of residue Asp632 has been specifically characterized by mutational analysis and biophysical approaches. We show that Asp632 substitutions with positively charged residues (D632K and D632R) or a hydrophobic residue (D632V) could completely abolish Env-mediated viral entry, while a protein with a conserved substitution (D632E) retained its activity. Similar to the Lys574 mutations, nonconserved substitutions of Asp632 also severely impaired the α-helicity, stability, and conformation of six-helix bundles as shown by N36 and C34 peptides as a model system. Furthermore, nonconserved substitutions of Asp632 significantly reduced the potency of C34 to sequestrate six-helix bundle formation and to inhibit HIV-1-mediated cell-cell fusion and infection, suggesting its importance for designing antiviral fusion inhibitors. Taken together, these data suggest that the salt bridge between the N- and C-terminal heptad repeat regions of the fusion-active HIV-1 gp41 core structure is critical for viral entry and inhibition.

2008 ◽  
Vol 82 (13) ◽  
pp. 6349-6358 ◽  
Author(s):  
Yuxian He ◽  
Jianwei Cheng ◽  
Jingjing Li ◽  
Zhi Qi ◽  
Hong Lu ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif (621QIWNNMT627) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD (628WMEWEREI635). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the 621QIWNNMT627 motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T m ] value of 82°C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T m of 64°C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.


2009 ◽  
Vol 83 (10) ◽  
pp. 4844-4853 ◽  
Author(s):  
Felix G. Hermann ◽  
Lisa Egerer ◽  
Frances Brauer ◽  
Christian Gerum ◽  
Harald Schwalbe ◽  
...  

ABSTRACT Binding of the human immunodeficiency virus (HIV) envelope glycoprotein (Env) to the cellular CD4 receptor and a chemokine coreceptor initiates a series of conformational changes in the Env subunits gp120 and gp41. Eventually, the trimeric gp41 folds into a six-helix bundle, thereby inducing fusion of the viral and cellular membranes. C peptides derived from the C-terminal heptad repeat (CHR) of gp41 are efficient entry inhibitors as they block the six-helix bundle formation. Previously, we developed a membrane-anchored C peptide (maC46) expressed from a retroviral vector that also shows high activity against virus strains resistant to enfuvirtide (T-20), an antiviral C peptide approved for clinical use. Here, we present a systematic analysis of mutations in Env that confer resistance of HIV type 1 (HIV-1) to maC46. We selected an HIV-1 BaL strain with 10-fold reduced sensitivity to maC46 (BaL_C46) by passaging virus for nearly 200 days in the presence of gradually increasing concentrations of maC46. In comparison to wild-type BaL, BaL_C46 had five mutations at highly conserved positions in Env, three in gp120, one in the N-terminal heptad-repeat (NHR), and one in the CHR of gp41. No mutations were found in the NHR domain around the GIV motif that are known to cause resistance to enfuvirtide. Instead, maC46 resistance was found to depend on complementary mutations in the NHR and CHR that considerably favor binding of the mutated NHR to the mutated CHR over binding to maC46. In addition, resistance was highly dependent on mutations in gp120 that accelerated entry. Taken together, resistance to maC46 did not develop readily and required multiple cooperating mutations at conserved positions of the viral envelope glycoproteins gp120 and gp41.


2002 ◽  
Vol 76 (13) ◽  
pp. 6780-6790 ◽  
Author(s):  
Hana Golding ◽  
Marina Zaitseva ◽  
Eve de Rosny ◽  
Lisa R. King ◽  
Jody Manischewitz ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry requires conformational changes in the transmembrane subunit (gp41) of the envelope glycoprotein (Env) involving transient fusion intermediates that contain exposed coiled-coil (prehairpin) and six-helix bundle structures. We investigated the HIV-1 entry mechanism and the potential of antibodies targeting fusion intermediates to block Env-mediated membrane fusion. Suboptimal temperature (31.5°C) was used to prolong fusion intermediates as monitored by confocal microscopy. After transfer to 37°C, these fusion intermediates progressed to syncytium formation with enhanced kinetics compared with effector-target (E/T) cell mixtures that were incubated only at 37°C. gp41 peptides DP-178, DP-107, and IQN17 blocked fusion more efficiently (5- to 10-fold-lower 50% inhibitory dose values) when added to E/T cells at the suboptimal temperature prior to transfer to 37°C. Rabbit antibodies against peptides modeling the N-heptad repeat or the six-helix bundle of gp41 blocked fusion and viral infection at 37°C only if preincubated with E/T cells at the suboptimal temperature. Similar fusion inhibition was observed with human six-helix bundle-specific monoclonal antibodies. Our data demonstrate that antibodies targeting gp41 fusion intermediates are able to bind to gp41 and arrest fusion. They also indicate that six-helix bundles can form prior to fusion and that the lag time before fusion occurs may include the time needed to accumulate preformed six-helix bundles at the fusion site.


2010 ◽  
Vol 84 (18) ◽  
pp. 9359-9368 ◽  
Author(s):  
Yun Zhu ◽  
Lu Lu ◽  
Liling Xu ◽  
Hengwen Yang ◽  
Shibo Jiang ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) gp41 plays a critical role in the viral fusion process, and its N- and C-terminal heptad repeat domains serve as important targets for developing anti-HIV-1 drugs, like T-20 (generic name, enfuvirtide; brand name, Fuzeon). Here, we conducted a yeast two-hybrid screening on a human bone marrow cDNA library using the recombinant soluble gp41 ectodomain as the bait and identified a novel gp41 core-binding molecule, designated P20. P20 showed no homology with a current HIV fusion inhibitor, T-20, but had sequence homology to a human protein, troponin I type 3 interacting kinase (TNNI3K)-like protein. While it could bind to the six-helix bundle core structure formed by the N- and C-terminal heptad repeats, P20 did not interrupt the formation of the six-helix bundle. P20 was effective in blocking HIV-1 Env-mediated syncytium formation and inhibiting infection by a broad spectrum of HIV-1 strains with distinct subtypes and coreceptor tropism, while it was ineffective against other enveloped viruses, such as vesicular stomatitis virus and influenza A virus. P20 exhibited no significant cytotoxicity to the CD4+ cells that were used for testing antiviral activity. Among the 11 P20 mutants, four analogous peptides with a common motif (WGRLEGRRT) exhibited significantly reduced anti-HIV-1 activity, suggesting that this region is the critical active site of P20. Therefore, this peptide can be used as a lead for developing novel HIV fusion inhibitors and as a probe for studying the membrane-fusogenic mechanism of HIV.


2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Shan Su ◽  
Yun Zhu ◽  
Sheng Ye ◽  
Qianqian Qi ◽  
Shuai Xia ◽  
...  

ABSTRACT 20 (enfuvirtide) and other peptides derived from the human immunodeficiency virus type 1 (HIV-1) gp41 C-terminal heptad repeat (CHR) region inhibit HIV fusion by binding to the hydrophobic grooves on the N-terminal heptad repeat (NHR) trimer and blocking six-helix-bundle (6-HB) formation. Several strategies focusing on the binding grooves of the NHR trimer have been adopted to increase the antiviral activity of the CHR peptides. Here, we developed a novel and simple strategy to greatly enhance the potency of the existing peptide-based HIV fusion inhibitors. First, we identified a shallow pocket adjacent to the groove in the N-terminal region of NHR trimer as a new drug target, and then we designed several short artificial peptides to fit this target. After the addition of IDL (Ile-Asp-Leu) to the C terminus of CHR peptide WQ or MT-WQ, the conjugated peptides, WQ-IDL and MT-WQ-IDL, showed much more potent activities than WQ and T20, respectively, in inhibiting HIV-1 IIIB infection. WQ-IDL and MT-WQ-IDL were also more effective than WQ in blocking HIV-1 Env-mediated membrane fusion and had higher levels of binding affinity with NHR peptide N46. We solved the crystal structure of the 6-HB formed by MT-WQ-IDL and N46 and found that, besides the N-terminal MT hook tail, the IDL tail anchor of MT-WQ-IDL also binds with the shallow hydrophobic pocket outside the groove of the NHR trimer, resulting in enhanced inhibition of HIV-1 fusion with the target cell. It is expected that this novel approach can be widely used to improve the potency of peptidic fusion inhibitors against other enveloped viruses with class I fusion proteins. IMPORTANCE The hydrophobic groove of the human immunodeficiency virus type 1 (HIV-1) gp41 NHR trimer has been known as the classic drug target to develop fusion inhibitors derived from the gp41 CHR. Here, we developed a novel and simple strategy to improve the existing peptide-based HIV fusion inhibitors. We identified a shallow pocket adjacent to the groove in the NHR trimer and added a short artificial peptide consisting of three amino acids (IDL) to the C terminus of a fusion inhibitor to fit this new target. The inhibition activity of this new conjugated peptide was significantly enhanced, by 77-fold, making it much more potent than T20 (enfuvirtide) and suggesting that the IDL tail can be adopted for optimizing existing HIV-1 CHR peptide fusion inhibitors. This new approach of identifying a potential binding pocket outside the traditional target and creating an artificial tail anchor can be widely applied to design novel fusion inhibitors against other class I enveloped viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV).


2009 ◽  
Vol 53 (12) ◽  
pp. 4987-4998 ◽  
Author(s):  
Hongtao Wang ◽  
Zhi Qi ◽  
Angi Guo ◽  
Qinchao Mao ◽  
Hong Lu ◽  
...  

ABSTRACT We previously identified a small-molecule anti-human immunodeficiency virus type 1 (anti-HIV-1) compound, ADS-J1, using a computer-aided molecular docking technique for primary screening and a sandwich enzyme-linked immunosorbent assay (ELISA) as a secondary screening method. In the present study, we demonstrated that ADS-J1 is an HIV-1 entry inhibitor, as determined by a time-of-addition assay and an HIV-1-mediated cell fusion assay. Further mechanism studies confirmed that ADS-J1 does not block gp120-CD4 binding and exhibits a marginal interaction with the HIV-1 coreceptor CXCR4. However, ADS-J1 inhibited the fusion-active gp41 core formation mimicked by peptides derived from the viral gp41 N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR), as determined by ELISA, native polyacrylamide gel electrophoresis, and circular dichroism analysis. Moreover, using a surface plasmon resonance assay, we found that ADS-J1 could bind directly to IQN17, a trimeric peptide containing the gp41 pocket region, resulting in the conformational change of IQN17 and the blockage of its interaction with a short D peptide, PIE7. The positively charged residue (K574) located in the gp41 pocket region is critical for the binding of ADS-J1 to NHR. These results suggest that ADS-J1 may bind to the viral gp41 NHR region through its hydrophobic and ionic interactions with the hydrophobic and positively charged resides located in the pocket region, subsequently blocking the association between the gp41 NHR and CHR regions to form the fusion-active gp41 core, thereby inhibiting HIV-1-mediated membrane fusion and virus entry.


2001 ◽  
Vol 75 (18) ◽  
pp. 8605-8614 ◽  
Author(s):  
Cynthia A. Derdeyn ◽  
Julie M. Decker ◽  
Jeffrey N. Sfakianos ◽  
Zhijun Zhang ◽  
William A. O'Brien ◽  
...  

ABSTRACT T-20 is a synthetic peptide that corresponds to 36 amino acids within the C-terminal heptad repeat region (HR2) of human immunodeficiency virus type 1 (HIV-1) gp41. T-20 has been shown to potently inhibit viral replication of HIV-1 both in vitro and in vivo and is currently being evaluated in a Phase III clinical trial. T-649 is an inhibitory peptide that also corresponds to 36 amino acids within HR2. This sequence overlaps the T-20 sequence but is shifted 10 residues toward the N terminus of gp41. Both inhibitors are thought to exert their antiviral activity by interfering with the conformational changes that occur within gp41 to promote membrane fusion following gp120 interactions with CD4 and coreceptor molecules. We have shown previously that coreceptor specificity defined by the V3 loop of gp120 modulates sensitivity to T-20 and that a critical region within the N-terminal heptad repeat (HR1) of gp41 is the major determinant of sensitivity (C. A. Derdeyn et al., J. Virol. 74:8358–8367, 2000). This report shows that (i) regions within gp41 distinct from those associated with T-20 sensitivity govern the baseline sensitivity to T-649 and (ii) T-649 sensitivity of chimeric viruses that contain sequences derived from CXCR4- and CCR5-specific envelopes is also modulated by coreceptor specificity. Moreover, the pattern of sensitivity of CCR5-specific chimeras with only minor differences in their V3 loop was consistent for both inhibitors, suggesting that the individual affinity for coreceptor may influence accessibility of these inhibitors to their target sequence. Finally, an analysis of the sensitivity of 55 primary, inhibitor-naive HIV-1 isolates found that higher concentrations of T-20 (P < 0.001) and T-649 (P = 0.016) were required to inhibit CCR5-specific viruses compared to viruses that utilize CXCR4. The results presented here implicate gp120-coreceptor interactions in driving the complex conformational changes that occur in gp41 to promote fusion and entry and suggest that sensitivity to different HR1-directed fusion inhibitors is governed by distinct regions of gp41 but is consistently modulated by coreceptor specificity.


2006 ◽  
Vol 80 (1) ◽  
pp. 353-359 ◽  
Author(s):  
Sean M. Amberg ◽  
Robert C. Netter ◽  
Graham Simmons ◽  
Paul Bates

ABSTRACT The envelope of class I viruses can be a target for potent viral inhibitors, such as the human immunodeficiency virus type 1 (HIV-1) inhibitor enfuvirtide, which are derived from the C-terminal heptad repeat (HR2) of the transmembrane (TM) subunit. Resistance to an HR2-based peptide inhibitor of a model retrovirus, subgroup A of the Avian Sarcoma and Leukosis Virus genus (ASLV-A), was studied by examining mutants derived by viral passage in the presence of inhibitor. Variants with reduced sensitivity to inhibitor were readily selected in vitro. Sensitivity determinants were identified for 13 different isolates, all of which mapped to the TM subunit. These determinants were identified in two regions: (i) the N-terminal heptad repeat (HR1) and (ii) the N-terminal segment of TM, between the subunit cleavage site and the fusion peptide. The latter class of mutants identified a region outside of the predicted HR2-binding site that can significantly alter sensitivity to inhibitor. A subset of the HR1 mutants displayed the unanticipated ability to infect nonavian cells. This expanded tropism was associated with increased efficiency of envelope triggering by soluble receptor at low temperatures, as measured by protease sensitivity of the surface subunit (SU) of envelope. In addition, expanded tropism was linked for the most readily triggered mutants with increased sensitivity to neutralization by SU-specific antiserum. These observations depict a class of HR2 peptide-selected mutations with a reduced activation threshold, thereby allowing the utilization of alternative receptors for viral entry.


2018 ◽  
Author(s):  
Shijian Zhang ◽  
Wei Li Wang ◽  
Shuobing Chen ◽  
Maolin Lu ◽  
Eden P. Go ◽  
...  

SummaryThe human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates viral entry into cells and is the major target for the host antibody response. In infected cells, the mature Env [(gp120/gp41)3] is produced by cleavage of a trimeric gp160 precursor. Proteolytic cleavage decreases Env conformational flexibility, allowing the mature Env to resist antibody binding to conserved elements. The conformational plasticity of the Env precursor skews the humoral immune response towards the elicitation of ineffectual antibodies, contributing to HIV-1 persistence in the infected host. The structural basis for the plasticity of the Env precursor remains elusive. Here we use cryo-electron microscopy to visualize two coexisting conformational states of the full-length Env precursor at nominal resolutions of 5.5 and 8.0 Å. The State-P2 conformation features a three-helix bundle of the gp41 heptad repeat region in the core, but has disordered membrane-interactive regions. State-P1 trimers lack the three-helix bundle and instead retain ordered transmembrane and membrane-proximal external regions embracing a central cavity. Our structural data shed light on the unusual plasticity of the Env precursor and provide new clues to Env immunogen discovery.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Olfa Mzoughi ◽  
Meritxell Teixido ◽  
Rémi Planès ◽  
Manutea Serrero ◽  
Ibtissem Hamimed ◽  
...  

Abstract The trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions. At the virological level, while trimeric-C34 conserves the same high anti-fusion activity as monomeric-C34, trimerization of N36-peptide induced a significant increase, reaching 500-times higher in anti-fusion activity, against R5-tropic virus-mediated fusion. This result was associated with increased stability of the N36 trimer peptide with respect to the monomeric form, as demonstrated by the comparative kinetics of their antiviral activities during 6-day incubation in a physiological medium. Collectively, our findings demonstrate that while the trimerization of C34 peptide had no beneficial effect on its stability and antiviral activity, the trimerization of N36 peptide strengthened both stability and antiviral activity. This approach, promotes trimers as new promising HIV-1 inhibitors and point to future development aimed toward innovative peptide fusion inhibitors, microbicides or as immunogens.


Sign in / Sign up

Export Citation Format

Share Document