scholarly journals A Calcium Sensor Discovered in Bluetongue Virus Nonstructural Protein 2 Is Critical for Virus Replication

2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Shah Kamranur Rahman ◽  
Adeline Kerviel ◽  
Bjorn-Patrick Mohl ◽  
Yao He ◽  
Z. Hong Zhou ◽  
...  

ABSTRACT Many viruses use specific viral proteins to bind calcium ions (Ca2+) for stability or to modify host cell pathways; however, to date, no Ca2+ binding protein has been reported in bluetongue virus (BTV), the causative agent of bluetongue disease in livestock. Here, using a comprehensive bioinformatics screening, we identified a putative EF-hand-like Ca2+ binding motif in the carboxyl terminal region of BTV nonstructural phosphoprotein 2 (NS2). Subsequently, using a recombinant NS2, we demonstrated that NS2 binds Ca2+ efficiently and that Ca2+ binding was perturbed when the Asp and Glu residues in the motif were substituted by alanine. Using circular dichroism analysis, we found that Ca2+ binding by NS2 triggered a helix-to-coil secondary structure transition. Further, cryo-electron microscopy in the presence of Ca2+ revealed that NS2 forms helical oligomers which, when aligned with the N-terminal domain crystal structure, suggest an N-terminal domain that wraps around the C-terminal domain in the oligomer. Further, an in vitro kinase assay demonstrated that Ca2+ enhanced the phosphorylation of NS2 significantly. Importantly, mutations introduced at the Ca2+ binding site in the viral genome by reverse genetics failed to allow recovery of viable virus, and the NS2 phosphorylation level and assembly of viral inclusion bodies (VIBs) were reduced. Together, our data suggest that NS2 is a dedicated Ca2+ binding protein and that calcium sensing acts as a trigger for VIB assembly, which in turn facilitates virus replication and assembly. IMPORTANCE After entering the host cells, viruses use cellular host factors to ensure a successful virus replication process. For replication in infected cells, members of the Reoviridae family form inclusion body-like structures known as viral inclusion bodies (VIB) or viral factories. Bluetongue virus (BTV) forms VIBs in infected cells through nonstructural protein 2 (NS2), a phosphoprotein. An important regulatory factor critical for VIB formation is phosphorylation of NS2. In our study, we discovered a characteristic calcium-binding EF-hand-like motif in NS2 and found that the calcium binding preferentially affects phosphorylation level of the NS2 and has a role in regulating VIB assembly.

2005 ◽  
Vol 79 (15) ◽  
pp. 10023-10031 ◽  
Author(s):  
Jens Modrof ◽  
Kostas Lymperopoulos ◽  
Polly Roy

ABSTRACT In bluetongue virus (BTV)-infected cells, large cytoplasmic aggregates are formed, termed viral inclusion bodies (VIBs), which are believed to be the sites of viral replication and morphogenesis. The BTV nonstructural protein NS2 is the major component of VIBs. NS2 undergoes intracellular phosphorylation and possesses a strong single-stranded RNA binding activity. By changing phosphorylated amino acids to alanines and aspartates, we have mapped the phosphorylated sites of NS2 to two serine residues at positions 249 and 259. Since both of these serines are within the context of protein kinase CK2 recognition signals, we have further examined if CK2 is involved in NS2 phosphorylation by both intracellular colocalization and an in vitro phosphorylation assay. In addition, we have utilized the NS2 mutants to determine the role of phosphorylation on NS2 activities. The data obtained demonstrate that NS2 phosphorylation is not necessary either for its RNA binding properties or for its ability to interact with the viral polymerase VP1. However, phosphorylated NS2 exhibited VIB formation while unmodified NS2 failed to assemble as VIBs although smaller oligomeric forms of NS2 were readily formed. Our data reveal that NS2 phosphorylation controls VIBs formation consistent with a model in which NS2 provides the matrix for viral assembly.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Yuqin Zhou ◽  
Justin M. Su ◽  
Charles E. Samuel ◽  
Dzwokai Ma

ABSTRACT Nonsegmented negative-strand RNA viruses, including measles virus (MeV), a member of the Paramyxoviridae family, are assumed to replicate in cytoplasmic inclusion bodies. These cytoplasmic viral factories are not membrane bound, and they serve to concentrate the viral RNA replication machinery. Although inclusion bodies are a prominent feature in MeV-infected cells, their biogenesis and regulation are not well understood. Here, we show that infection with MeV triggers inclusion body formation via liquid-liquid phase separation (LLPS), a process underlying the formation of membraneless organelles. We find that the viral nucleoprotein (N) and phosphoprotein (P) are sufficient to trigger MeV phase separation, with the C-terminal domains of the viral N and P proteins playing a critical role in the phase transition. We provide evidence suggesting that the phosphorylation of P and dynein-mediated transport facilitate the growth of these organelles, implying that they may have key regulatory roles in the biophysical assembly process. In addition, our findings support the notion that these inclusions change from liquid to gel-like structures as a function of time after infection, leaving open the intriguing possibility that the dynamics of these organelles can be tuned during infection to optimally suit the changing needs during the viral replication cycle. Our study provides novel insight into the process of formation of viral inclusion factories, and taken together with earlier studies, suggests that Mononegavirales have broadly evolved to utilize LLPS as a common strategy to assemble cytoplasmic replication factories in infected cells. IMPORTANCE Measles virus remains a pathogen of significant global concern. Despite an effective vaccine, outbreaks continue to occur, and globally ∼100,000 measles-related deaths are seen annually. Understanding the molecular basis of virus-host interactions that impact the efficiency of virus replication is essential for the further development of prophylactic and therapeutic strategies. Measles virus replication occurs in the cytoplasm in association with discrete bodies, though little is known of the nature of the inclusion body structures. We recently established that the cellular protein WD repeat-containing protein 5 (WDR5) enhances MeV growth and is enriched in cytoplasmic viral inclusion bodies that include viral proteins responsible for RNA replication. Here, we show that MeV N and P proteins are sufficient to trigger the formation of WDR5-containing inclusion bodies, that these structures display properties characteristic of phase-separated liquid organelles, and that P phosphorylation together with the host dynein motor affect the efficiency of the liquid-liquid phase separation process.


2000 ◽  
Vol 81 (8) ◽  
pp. 1961-1965 ◽  
Author(s):  
Nigel J. Horscroft ◽  
Polly Roy

The bluetongue virus ssRNA-binding protein, NS2, is a phosphoprotein that forms viral inclusion bodies in infected cells. Recombinant NS2 was expressed in the baculovirus expression system and purified to homogeneity from insect cells. Purified NS2 bound nucleosides. Further investigation revealed that the protein bound ATP and GTP and could hydrolyse both nucleosides to their corresponding NMPs, with a higher efficiency for the hydrolysis of ATP. The increased efficiency of hydrolysis of ATP correlated with a higher binding affinity of NS2 for ATP than GTP. Ca2+, Mg2+ and Mn2+ were able to function as the required divalent cation in the reactions. The phosphohydrolase activity was not sensitive to ouabain, an inhibitor of cellular ATPases, suggesting that this activity was not the result of a cellular contaminant.


2020 ◽  
Vol 94 (15) ◽  
Author(s):  
Jeanette M. Criglar ◽  
Sue E. Crawford ◽  
Boyang Zhao ◽  
Hunter G. Smith ◽  
Fabio Stossi ◽  
...  

ABSTRACT Many RNA viruses replicate in cytoplasmic compartments (virus factories or viroplasms) composed of viral and cellular proteins, but the mechanisms required for their formation remain largely unknown. Rotavirus (RV) replication in viroplasms requires interactions between virus nonstructural proteins NSP2 and NSP5, which are associated with components of lipid droplets (LDs). We previously identified two forms of NSP2 in RV-infected cells, a cytoplasmically dispersed form (dNSP2) and a viroplasm-specific form (vNSP2), which interact with hypophosphorylated and hyperphosphorylated NSP5, respectively, indicating that a coordinated phosphorylation cascade controls viroplasm assembly. The cellular kinase CK1α phosphorylates NSP2 on serine 313, triggering the localization of vNSP2 to sites of viroplasm assembly and its association with hyperphosphorylated NSP5. Using reverse genetics, we generated a rotavirus with a phosphomimetic NSP2 (S313D) mutation to directly evaluate the role of CK1α NSP2 phosphorylation in viroplasm formation. Recombinant rotavirus NSP2 S313D (rRV NSP2 S313D) is significantly delayed in viroplasm formation and in virus replication and interferes with wild-type RV replication in coinfection. Taking advantage of the delay in viroplasm formation, the NSP2 phosphomimetic mutant was used as a tool to observe very early events in viroplasm assembly. We show that (i) viroplasm assembly correlates with NSP5 hyperphosphorylation and (ii) vNSP2 S313D colocalizes with RV-induced LDs without NSP5, suggesting that vNSP2 phospho-S313 is sufficient for interacting with LDs and may be the virus factor required for RV-induced LD formation. Further studies with the rRV NSP2 S313D virus are expected to reveal new aspects of viroplasm and LD initiation and assembly. IMPORTANCE Reverse genetics was used to generate a recombinant rotavirus with a single phosphomimetic mutation in nonstructural protein 2 (NSP2 S313D) that exhibits delayed viroplasm formation, delayed replication, and an interfering phenotype during coinfection with wild-type rotavirus, indicating the importance of this amino acid during virus replication. Exploiting the delay in viroplasm assembly, we found that viroplasm-associated NSP2 colocalizes with rotavirus-induced lipid droplets prior to the accumulation of other rotavirus proteins that are required for viroplasm formation and that NSP5 hyperphosphorylation is required for viroplasm assembly. These data suggest that NSP2 phospho-S313 is sufficient for interaction with lipid droplets and may be the virus factor that induces lipid droplet biogenesis in rotavirus-infected cells. Lipid droplets are cellular organelles critical for the replication of many viral and bacterial pathogens, and thus, understanding the mechanism of NSP2-mediated viroplasm/lipid droplet initiation and interaction will lead to new insights into this important host-pathogen interaction.


2015 ◽  
Vol 89 (14) ◽  
pp. 7170-7186 ◽  
Author(s):  
Laurent Chatel-Chaix ◽  
Wolfgang Fischl ◽  
Pietro Scaturro ◽  
Mirko Cortese ◽  
Stephanie Kallis ◽  
...  

ABSTRACTDengue virus (DENV) infection causes the most prevalent arthropod-borne viral disease worldwide. Approved vaccines are not available, and targets suitable for the development of antiviral drugs are lacking. One possible drug target is nonstructural protein 4B (NS4B), because it is absolutely required for virus replication; however, its exact role in the DENV replication cycle is largely unknown. With the aim of mapping NS4B determinants critical for DENV replication, we performed a reverse genetic screening of 33 NS4B mutants in the context of an infectious DENV genome. While the majority of these mutations were lethal, for several of them, we were able to select for second-site pseudoreversions, most often residing in NS4B and restoring replication competence. To identify all viral NS4B interaction partners, we engineered a fully viable DENV genome encoding an affinity-tagged NS4B. Mass spectrometry-based analysis of the NS4B complex isolated from infected cells identified the NS3 protease/helicase as a major interaction partner of NS4B. By combining the genetic complementation map of NS4B with a replication-independent expression system, we identified the NS4B cytosolic loop—more precisely, amino acid residue Q134—as a critical determinant for NS4B-NS3 interaction. An alanine substitution at this site completely abrogated the interaction and DENV RNA replication, and both were restored by pseudoreversions A69S and A137V. This strict correlation between the degree of NS4B-NS3 interaction and DENV replication provides strong evidence that this viral protein complex plays a pivotal role during the DENV replication cycle, hence representing a promising target for novel antiviral strategies.IMPORTANCEWith no approved therapy or vaccine against dengue virus infection, the viral nonstructural protein 4B (NS4B) represents a possible drug target, because it is indispensable for virus replication. However, little is known about its precise structure and function. Here, we established the first comprehensive genetic interaction map of NS4B, identifying amino acid residues that are essential for virus replication, as well as second-site mutations compensating for their defects. Additionally, we determined the NS4B viral interactome in infected cells and identified the NS3 protease/helicase as a major interaction partner of NS4B. We mapped residues in the cytosolic loop of NS4B as critical determinants for interaction with NS3, as well as RNA replication. The strong correlation between NS3-NS4B interaction and RNA replication provides strong evidence that this complex plays a pivotal role in the viral replication cycle, hence representing a promising antiviral drug target.


RSC Advances ◽  
2017 ◽  
Vol 7 (82) ◽  
pp. 51773-51788 ◽  
Author(s):  
Wenlong Zhang ◽  
Enxian Shi ◽  
Yanan Feng ◽  
Yaqin Zhao ◽  
Binsheng Yang

Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins, which refer to nucleotide excision repair (NER).


2006 ◽  
Vol 80 (12) ◽  
pp. 6061-6071 ◽  
Author(s):  
Z. Berkova ◽  
S. E. Crawford ◽  
G. Trugnan ◽  
T. Yoshimori ◽  
A. P. Morris ◽  
...  

ABSTRACT Rotavirus is a major cause of infantile viral gastroenteritis. Rotavirus nonstructural protein 4 (NSP4) has pleiotropic properties and functions in viral morphogenesis as well as pathogenesis. Recent reports show that the inhibition of NSP4 expression by small interfering RNAs leads to alteration of the production and distribution of other viral proteins and mRNA synthesis, suggesting that NSP4 also affects virus replication by unknown mechanisms. This report describes studies aimed at correlating the localization of intracellular NSP4 in cells with its functions. To be able to follow the localization of NSP4, we fused the C terminus of full-length NSP4 with the enhanced green fluorescent protein (EGFP) and expressed this fusion protein inducibly in a HEK 293-based cell line to avoid possible cytotoxicity. NSP4-EGFP was initially localized in the endoplasmic reticulum (ER) as documented by Endo H-sensitive glycosylation and colocalization with ER marker proteins. Only a small fraction of NSP4-EGFP colocalized with the ER-Golgi intermediate compartment (ERGIC) marker ERGIC-53. NSP4-EGFP did not enter the Golgi apparatus, in agreement with the Endo H sensitivity and a previous report that secretion of an NSP4 cleavage product generated in rotavirus-infected cells is not inhibited by brefeldin A. A significant population of expressed NSP4-EGFP was distributed in novel vesicular structures throughout the cytoplasm, not colocalizing with ER, ERGIC, Golgi, endosomal, or lysosomal markers, thus diverging from known biosynthetic pathways. The appearance of vesicular NSP4-EGFP was dependent on intracellular calcium levels, and vesicular NSP4-EGFP colocalized with the autophagosomal marker LC3. In rotavirus-infected cells, NSP4 colocalized with LC3 in cap-like structures associated with viroplasms, the site of nascent viral RNA replication, suggesting a possible new mechanism for the involvement of NSP4 in virus replication.


2002 ◽  
Vol 76 (22) ◽  
pp. 11254-11264 ◽  
Author(s):  
Elena I. Frolova ◽  
Rafik Z. Fayzulin ◽  
Susan H. Cook ◽  
Diane E. Griffin ◽  
Charles M. Rice ◽  
...  

ABSTRACT Alphaviruses productively infect a variety of vertebrate and insect cell lines. In vertebrate cells, Sindbis virus redirects cellular processes to meet the needs of virus propagation. At the same time, cells respond to virus replication by downregulating virus growth and preventing dissemination of the infection. The balance between these two mechanisms determines the outcome of infection at the cellular and organismal levels. In this report, we demonstrate that a viral nonstructural protein, nsP2, is a significant regulator of Sindbis virus-host cell interactions. This protein not only is a component of the replicative enzyme complex required for replication and transcription of viral RNAs but also plays a role in suppressing the antiviral response in Sindbis virus-infected cells. nsP2 most likely acts by decreasing interferon (IFN) production and minimizing virus visibility. Infection of murine cells with Sindbis virus expressing a mutant nsP2 leads to higher levels of IFN secretion and the activation of 170 cellular genes that are induced by IFN and/or virus replication. Secreted IFN protects naive cells against Sindbis virus infection and also stops viral replication in productively infected cells. Mutations in nsP2 can also attenuate Sindbis virus cytopathogenicity. Such mutants can persist in mammalian cells with defects in the alpha/beta IFN (IFN-α/β) system or when IFN activity is neutralized by anti-IFN-α/β antibodies. These findings provide new insight into the alphavirus-host cell interaction and have implications for the development of improved alphavirus expression systems with better antigen-presenting potential.


2015 ◽  
Vol 90 (3) ◽  
pp. 1178-1189 ◽  
Author(s):  
Li-Chen Yen ◽  
Jia-Teh Liao ◽  
Hwei-Jen Lee ◽  
Wei-Yuan Chou ◽  
Chun-Wei Chen ◽  
...  

ABSTRACTNS1 is the only nonstructural protein that enters the lumen of the endoplasmic reticulum (ER), where NS1 is glycosylated, forms a dimer, and is subsequently secreted during flavivirus replication as dimers or hexamers, which appear to be highly immunogenic to the infected host, as protective immunity can be elicited against homologous flavivirus infections. Here, by using atrans-complementation assay, we identified the C-terminal end of NS1 derived from Japanese encephalitis virus (JEV), which was more flexible than other regions in terms of housing foreign epitopes without a significant impact on virus replication. This mapped flexible region is located in the conserved tip of the core β-ladder domain of the multimeric NS1 structure and is also known to contain certain linear epitopes, readily triggering specific antibody responses from the host. Despite becoming attenuated, recombinant JEV with insertion of a neutralizing epitope derived from enterovirus 71 (EV71) into the C-terminal end of NS1 not only could be normally released from infected cells, but also induced dual protective immunity for the host to counteract lethal challenge with either JEV or EV71 in neonatal mice. These results indicated that the secreted multimeric NS1 of flaviviruses may serve as a natural protein carrier to render epitopes of interest more immunogenic in the C terminus of the core β-ladder domain.IMPORTANCEThe positive-sense RNA genomes of mosquito-borne flaviviruses appear to be flexible in terms of accommodating extra insertions of short heterologous antigens into their virus genes. Here, we illustrate that the newly identified C terminus of the core β-ladder domain in NS1 could be readily inserted into entities such as EV71 epitopes, and the resulting NS1-epitope fusion proteins appeared to maintain normal virus replication, secretion ability, and multimeric formation from infected cells. Nonetheless, such an insertion attenuated the recombinant JEV in mice, despite having retained the brain replication ability observed in wild-type JEV. Mother dams immunized with recombinant JEV expressing EV71 epitope-NS1 fused proteins elicited neutralizing antibodies that protected the newborn mice against lethal EV71 challenge. Together, our results implied a potential application of JEV NS1 as a viral carrier protein to express a heterologous epitope to stimulate dual/multiple protective immunity concurrently against several pathogens.


Sign in / Sign up

Export Citation Format

Share Document