scholarly journals A Quantitative Affinity-Profiling System That Reveals Distinct CD4/CCR5 Usage Patterns among Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Strains

2009 ◽  
Vol 83 (21) ◽  
pp. 11016-11026 ◽  
Author(s):  
Samantha. H. Johnston ◽  
Michael A. Lobritz ◽  
Sandra Nguyen ◽  
Kara Lassen ◽  
Shirley Delair ◽  
...  

ABSTRACT The affinity of human immunodeficiency virus (HIV) envelope for CD4 and CCR5 appears to be associated with aspects of R5 virus (virus using the CCR5 coreceptor) pathogenicity. However, entry efficiency results from complex interactions between the viral envelope glycoprotein and both CD4 and CCR5, which limits attempts to correlate viral pathogenicity with surrogate measures of envelope CD4 and CCR5 affinities. Here, we present a system that provides a quantitative and comprehensive characterization of viral entry efficiency as a direct interdependent function of both CD4 and CCR5 levels. This receptor affinity profiling system also revealed heretofore unappreciated complexities underlying CD4/CCR5 usage. We first developed a dually inducible cell line in which CD4 and CCR5 could be simultaneously and independently regulated within a physiologic range of surface expression. Infection by multiple HIV type 1 (HIV-1) and simian immunodeficiency virus isolates could be examined simultaneously for up to 48 different combinations of CD4/CCR5 expression levels, resulting in a distinct usage pattern for each virus. Thus, each virus generated a unique three-dimensional surface plot in which viral infectivity varied as a function of both CD4 and CCR5 expression. From this functional form, we obtained a sensitivity vector along with corresponding metrics that quantified an isolate's overall efficiency of CD4/CCR5 usage. When applied to viral isolates with well-characterized sensitivities to entry/fusion inhibitors, the vector metrics were able to encapsulate their known biological phenotypes. The application of the vector metrics also indicated that envelopes derived from elite suppressors had overall-reduced entry efficiencies compared to those of envelopes derived from chronically infected viremic progressors. Our affinity-profiling system may help to refine studies of R5 virus tropism and pathogenesis.

1999 ◽  
Vol 73 (6) ◽  
pp. 4866-4881 ◽  
Author(s):  
Hassan M. Naif ◽  
Shan Li ◽  
Mohammed Alali ◽  
Joon Chang ◽  
Carol Mayne ◽  
...  

ABSTRACT Using identical (ID) twins, we have previously demonstrated that host cell genes exert a significant impact on productive human immunodeficiency virus (HIV) infection of monocytes and macrophages (J. Chang et al., J. Virol. 70:7792–7803, 1996). Therefore, the stage in the replication cycle at which these host genetic influences act was investigated in a study using 8 pairs of ID twins and 10 pairs of sex- and age-matched unrelated donors (URDs). In the first phase of the study, blood monocytes and monocyte-derived macrophages (MDM) of ID twins and URDs were infected with 15 HIV type 1 strains. Four well-characterized primary isolates and HIV-BaL were then examined in more detail. The host cell genetic effect in MDM was exerted predominantly prior to complete reverse transcription, as the HIV DNA level and p24 antigen levels were concordant (r = 0.91, P = 0.0001) and similar between the pairs of ID twin pairs (r = 0.96,P = 0.0001) but discordant between URD pairs (r = 0.11, P = 0.3) in both phases of the study. To further examine genetic influence on viral entry, we examined the proportion of CCR5 membrane expression on MDM. As expected, there was wide variability in proportion of MDM expressing CCR5 among URDs (r = 0.58, P = 0.2); however, this variability was significantly reduced between ID twin pairs (r = 0.81, P = 0.01). Differences in viral entry did not necessarily correlate with CCR5 expression, and only very low levels of CCR5 expression restricted HIV entry and production. In summary, the host cell genetic effect on HIV replication in macrophages appears to be exerted predominantly pre-reverse transcription. Although CCR5 was necessary for infection, other unidentified host genes are likely to limit productive infection.


2008 ◽  
Vol 82 (8) ◽  
pp. 4154-4158 ◽  
Author(s):  
Andrea M. Weiler ◽  
Qingsheng Li ◽  
Lijie Duan ◽  
Masahiko Kaizu ◽  
Kim L. Weisgrau ◽  
...  

ABSTRACT Here we report the results of studies in the simian immunodeficiency virus (SIV)-rhesus macaque model of intravaginal transmission of human immunodeficiency virus type 1 in the setting of genital ulcerative diseases. We document preferential association of vRNA with induced ulcers during the first days of infection and show that allogeneic cells of the inoculum traffic from the vaginal lumen to lymphatic tissues. This surprisingly rapid systemic dissemination in this cell-associated SIV challenge model thus reveals the challenges of preventing transmission in the setting of genital ulcerative diseases and illustrates the utility of this animal model in tests of strategies aimed at reducing transmission under these conditions.


2016 ◽  
Vol 90 (22) ◽  
pp. 10065-10073 ◽  
Author(s):  
Shilei Ding ◽  
Halima Medjahed ◽  
Jérémie Prévost ◽  
Mathieu Coutu ◽  
Shi-Hua Xiang ◽  
...  

ABSTRACT Binding of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) gp120 exterior envelope glycoprotein to CD4 triggers conformational changes in gp120 that promote its interaction with one of the chemokine receptors, usually CCR5, ultimately leading to gp41-mediated virus-cell membrane fusion and entry. We previously described that topological layers (layer 1, layer 2, and layer 3) in the gp120 inner domain contribute to gp120-trimer association in the unliganded state but also help secure CD4 binding. Relative to layer 1 of HIV-1 gp120, the SIVmac239 gp120 layer 1 plays a more prominent role in maintaining gp120-trimer association but is minimally involved in promoting CD4 binding, which could be explained by the existence of a well-conserved tryptophan at position 375 (Trp 375) in HIV-2/SIVsmm. In this study, we investigated the role of SIV layer 3 in viral entry, cell-to-cell fusion, and CD4 binding. We observed that a network of interactions involving some residues of the β8-α5 region in SIVmac239 layer 3 may contribute to CD4 binding by helping shape the nearby Phe 43 cavity, which directly contacts CD4. In summary, our results suggest that layer 3 in SIV has a greater impact on CD4 binding than in HIV-1. This work defines lineage-specific differences in layer 3 from HIV-1 and that from SIV. IMPORTANCE CD4-induced conformational changes in the gp120 inner domain involve rearrangements between three topological layers. While the role of layers 1 to 3 for HIV-1 and layers 1 and 2 for SIV on gp120 transition to the CD4-bound conformation has been reported, the role of SIV layer 3 remains unknown. Here we report that SIV layer 3 has a greater impact on CD4 binding than does layer 3 in HIV-1 gp120. This work defines lineage-specific differences in layer 3 from HIV-1 and SIV.


2009 ◽  
Vol 90 (10) ◽  
pp. 2513-2518 ◽  
Author(s):  
Christine S. Siegismund ◽  
Oliver Hohn ◽  
Reinhard Kurth ◽  
Stephen Norley

As a prelude to primate studies, the immunogenicity of wild-type and codon-optimized versions of simian immunodeficiency virus (SIV)agm Gag DNA, with and without co-administered granulocyte–macrophage colony-stimulating factor (GM-CSF) DNA, was directly compared in two strains of mice. Gag-specific T cells in the splenocytes of BALB/c and C57BL/6 mice immunized by gene gun were quantified by ELISpot using panels of overlapping synthetic peptides (15mers) spanning the entire capsid proteins of SIVagm, SIVmac and human immunodeficiency virus type 1. Specific antibodies were measured by ELISA. Codon optimization was shown to significantly increase the immune response to the DNA immunogens, reducing the amount of DNA necessary to induce cellular and antibody responses by one and two orders of magnitude, respectively. Co-administration of murine GM-CSF DNA was necessary for the induction of high level T- and B-cell responses. Finally, it was possible to identify both known and novel T-cell epitopes in the Gag proteins of the three viruses.


2005 ◽  
Vol 79 (23) ◽  
pp. 14748-14755 ◽  
Author(s):  
Melissa I. Chang ◽  
Porntula Panorchan ◽  
Terrence M. Dobrowsky ◽  
Yiider Tseng ◽  
Denis Wirtz

ABSTRACT A quantitative description of the binding interactions between human immunodeficiency virus (HIV) type 1 envelope glycoproteins and their host cell surface receptors remains incomplete. Here, we introduce a single-molecule analysis that directly probes the binding interactions between an individual viral subunit gp120 and a single receptor CD4 and/or chemokine coreceptor CCR5 in living cells. This analysis differentiates single-molecule binding from multimolecule avidity and shows that, while the presence of CD4 is required for gp120 binding to CCR5, the force required to rupture a single gp120-coreceptor bond is significantly higher and its lifetime is much longer than those of a single gp120-receptor bond. The lifetimes of these bonds are themselves shorter than those of the P-selectin/PSGL-1 bond involved in leukocyte attachment to the endothelium bonds during an inflammation response. These results suggest an amended model of HIV entry in which, immediately after the association of gp120 to its receptor, gp120 seeks its coreceptor to rapidly form a new bond. This “bond transfer” occurs only if CCR5 is in close proximity to CD4 and CD4 is still attached to gp120. The analysis presented here may serve as a general framework to study mechanisms of receptor-mediated interactions between viral envelope proteins and host cell receptors at the single-molecule level in living cells.


2002 ◽  
Vol 76 (15) ◽  
pp. 7812-7821 ◽  
Author(s):  
Rogier W. Sanders ◽  
Esther C. de Jong ◽  
Christopher E. Baldwin ◽  
Joost H. N. Schuitemaker ◽  
Martien L. Kapsenberg ◽  
...  

ABSTRACT Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4+ Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.


Sign in / Sign up

Export Citation Format

Share Document