scholarly journals Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era—a Conference at Harvard Medical School

2015 ◽  
Vol 89 (15) ◽  
pp. 7446-7448 ◽  
Author(s):  
David M. Knipe ◽  
Sean P. Whelan

Harvard Medical School convened a meeting of biomedical and clinical experts on 5 March 2015 on the topic of “Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era,” with the goals of discussing the lessons from the recent Ebola outbreak and using those lessons as a case study to aid preparations for future emerging infections. The speakers and audience discussed the special challenges in combatting an infectious agent that causes sporadic outbreaks in resource-poor countries. The meeting led to a call for improved basic medical care for all and continued support of basic discovery research to provide the foundation for preparedness for future outbreaks in addition to the targeted emergency response to outbreaks and targeted research programs against Ebola virus and other specific emerging pathogens.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Evans K. Lodge ◽  
Annakate M. Schatz ◽  
John M. Drake

Abstract Background During outbreaks of emerging and re-emerging infections, the lack of effective drugs and vaccines increases reliance on non-pharmacologic public health interventions and behavior change to limit human-to-human transmission. Interventions that increase the speed with which infected individuals remove themselves from the susceptible population are paramount, particularly isolation and hospitalization. Ebola virus disease (EVD), Severe Acute Respiratory Syndrome (SARS), and Middle East Respiratory Syndrome (MERS) are zoonotic viruses that have caused significant recent outbreaks with sustained human-to-human transmission. Methods This investigation quantified changing mean removal rates (MRR) and days from symptom onset to hospitalization (DSOH) of infected individuals from the population in seven different outbreaks of EVD, SARS, and MERS, to test for statistically significant differences in these metrics between outbreaks. Results We found that epidemic week and viral serial interval were correlated with the speed with which populations developed and maintained health behaviors in each outbreak. Conclusions These findings highlight intrinsic population-level changes in isolation rates in multiple epidemics of three zoonotic infections with established human-to-human transmission and significant morbidity and mortality. These data are particularly useful for disease modelers seeking to forecast the spread of emerging pathogens.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anahita Fathi ◽  
Marylyn M. Addo ◽  
Christine Dahlke

Vaccines are one of the greatest public health achievements and have saved millions of lives. They represent a key countermeasure to limit epidemics caused by emerging infectious diseases. The Ebola virus disease crisis in West Africa dramatically revealed the need for a rapid and strategic development of vaccines to effectively control outbreaks. Seven years later, in light of the SARS-CoV-2 pandemic, this need has never been as urgent as it is today. Vaccine development and implementation of clinical trials have been greatly accelerated, but still lack strategic design and evaluation. Responses to vaccination can vary widely across individuals based on factors like age, microbiome, co-morbidities and sex. The latter aspect has received more and more attention in recent years and a growing body of data provide evidence that sex-specific effects may lead to different outcomes of vaccine safety and efficacy. As these differences might have a significant impact on the resulting optimal vaccine regimen, sex-based differences should already be considered and investigated in pre-clinical and clinical trials. In this Review, we will highlight the clinical observations of sex-specific differences in response to vaccination, delineate sex differences in immune mechanisms, and will discuss the possible resulting implications for development of vaccine candidates against emerging infections. As multiple vaccine candidates against COVID-19 that target the same antigen are tested, vaccine development may undergo a decisive change, since we now have the opportunity to better understand mechanisms that influence vaccine-induced reactogenicity and effectiveness of different vaccines.


2018 ◽  
Vol 09 (05) ◽  
pp. 242-243
Author(s):  
Dr. Susanne Krome

Zehntausende nichtproteinkodierende RNAs haben die Kenntnisse über die normale Physiologie sowie die Entstehung und Behandlung von Krankheiten auf den Kopf gestellt, schreibt Prof. Frank Slack, Harvard Medical School, Boston/USA, im New England Journal of Medicine über den überwiegenden Teil unseres Genoms. Diese RNA-Sub typen regulieren Wachstum, Entwicklung und Organfunktion. Ihre Gewebespezifität eröffnet neue, unerwartete Möglichkeiten in der Onkologie. Der größte Teil ihrer Funktionen ist allerdings noch nicht erforscht.


1968 ◽  
Vol 8 (2) ◽  
pp. 308-309
Author(s):  
Mohammad Irshad Khan

It is alleged that the agricultural output in poor countries responds very little to movements in prices and costs because of subsistence-oriented produc¬tion and self-produced inputs. The work of Gupta and Majid is concerned with the empirical verification of the responsiveness of farmers to prices and marketing policies in a backward region. The authors' analysis of the respon¬siveness of farmers to economic incentives is based on two sets of data (concern¬ing sugarcane, cash crop, and paddy, subsistence crop) collected from the district of Deoria in Eastern U.P. (Utter Pradesh) a chronically foodgrain deficit region in northern India. In one set, they have aggregate time-series data at district level and, in the other, they have obtained data from a survey of five villages selected from 170 villages around Padrauna town in Deoria.


Author(s):  
Mark Russi

This chapter describes various biological hazards and their impact on workers and others. A major focus of the chapter is biological hazards in healthcare and laboratory settings, including exposure to bloodborne pathogens and prevention of diseases related to them. Sections deal with sharps injuries, HIV/AIDS, hepatitis B virus, hepatitis C virus, tuberculosis, and other infectious diseases that can be acquired in the work environment via direct contact, droplet or airborne spread, or fecal-oral transmission. In addition, infectious agents spread by animal contact or arthropod vectors in a broad range of settings will be addressed. Newly emerging infectious or re-emerging infections, such as those due to H5N1 and novel H1N1 influenza, Middle Eastern respiratory syndrome (MERS), and Ebola Virus Disease (EVD) as well as agents associated with bioterrorism are discussed.


2003 ◽  
Vol 77 (13) ◽  
pp. 7539-7544 ◽  
Author(s):  
Ayato Takada ◽  
Heinz Feldmann ◽  
Thomas G. Ksiazek ◽  
Yoshihiro Kawaoka

ABSTRACT Most strains of Ebola virus cause a rapidly fatal hemorrhagic disease in humans, yet there are still no biologic explanations that adequately account for the extreme virulence of these emerging pathogens. Here we show that Ebola Zaire virus infection in humans induces antibodies that enhance viral infectivity. Plasma or serum from convalescing patients enhanced the infection of primate kidney cells by the Zaire virus, and this enhancement was mediated by antibodies to the viral glycoprotein and by complement component C1q. Our results suggest a novel mechanism of antibody-dependent enhancement of Ebola virus infection, one that would account for the dire outcome of Ebola outbreaks in human populations.


Sign in / Sign up

Export Citation Format

Share Document