scholarly journals An Insight Into The Role of E3 ubiquitin Ligase c-Cbl, ESCRT Machinery and Host Cell Signaling in Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Entry and Trafficking

2017 ◽  
pp. JVI.01376-17 ◽  
Author(s):  
Binod Kumar ◽  
Arunava Roy ◽  
Mohanan Valiya Veettil ◽  
Bala Chandran

Kaposi's sarcoma-associated herpesvirus (KSHV)in vitroinfection of dermal endothelial cell begins with its binding to host cell surface receptor molecules such as heparan sulfate (HS), integrins (α3β1, αVβ3 and αVβ5), xCT and EphA2 receptor tyrosine kinase (EphA2R). These initial events initiate dynamic host protein-protein interactions involving a multi-molecular complex of receptors, signal molecules (FAK, Src, PI3-K, RhoA-GTPase), adaptors (c-Cbl, CIB1, Crk, p130Cas and GEF-C3G), and actin/myosin II light chain that leads to virus entry via macropinocytosis. Here we discuss how KSHV hijacks c-Cbl, an E3 ubiquitin ligase, to monoubiquitinate the receptors/actin which acts like markers for trafficking (similar to zip codes), resulting in the recruitment of the members of the host endosomal sorting complexes required for transport (ESCRT) Hrs, Tsg101, EAP45, CHMP 5 and 6 proteins (zip code readers) recognizing the ubiquitinated proteins and adaptors machinery to traffic through the different endosomal compartments in the cytoplasm to initiate the macropinocytic process and infection.

2007 ◽  
Vol 81 (12) ◽  
pp. 6573-6583 ◽  
Author(s):  
Robert E. Means ◽  
Sabine M. Lang ◽  
Jae U. Jung

ABSTRACT Kaposi's sarcoma-associated herpesvirus encodes two highly related membrane-associated, RING-CH-containing (MARCH) family E3 ubiquitin ligases, K3 and K5, that can down regulate a variety of cell surface proteins through enhancement of their endocytosis and degradation. In this report we present data that while K5 modulation of major histocompatibility complex class I (MHC-I) closely mirrors the mechanisms used by K3, alternative molecular pathways are utilized by this E3 ligase in the down regulation of intercellular adhesion molecule 1 (ICAM-1) and B7.2. Internalization assays demonstrate that down regulation of each target can occur through increased endocytosis from the cell surface. However, mutation of a conserved tyrosine-based endocytosis motif in K5 resulted in a protein lacking the ability to direct an increased rate of MHC-I or ICAM-1 internalization but still able to down regulate B7.2 in a ubiquitin-dependent but endocytosis-independent manner. Further, mutation of two acidic clusters abolished K5-mediated MHC-I degradation while only slightly decreasing ICAM-1 or B7.2 protein destruction. This same mutant abolished detectable ubiquitylation of all targets. These data indicate that while K5 can act as an E3 ubiquitin ligase to directly mediate cell surface molecule destruction, regulation of its targets occurs through multiple pathways, including ubiquitin-independent mechanisms.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Hagar Tadmor ◽  
Melanie Greenway ◽  
Anuj Ahuja ◽  
Ola Orgil ◽  
Gangling Liao ◽  
...  

ABSTRACT The Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. In a previous study, we have identified LANA-interacting proteins using a protein array screen. Here, we explore the effect of LANA on the stability and activity of RLIM (RING finger LIM-domain-interacting protein, encoded by the RNF12 gene), a novel LANA-interacting protein identified in that protein screen. RLIM is an E3 ubiquitin ligase that leads to the ubiquitination and degradation of several transcription regulators, such as LMO2, LMO4, LHX2, LHX3, LDB1, and the telomeric protein TRF1. Expression of LANA leads to downregulation of RLIM protein levels. This LANA-mediated RLIM degradation is blocked in the presence of the proteasome inhibitor, MG132. Therefore, the interaction between LANA and RLIM could be detected in coimmunoprecipitation assay only in the presence of MG132 to prevent RLIM degradation. A RING finger mutant RLIM is resistant to LANA-mediated degradation, suggesting that LANA promotes RLIM autoubiquitination. Interestingly, we found that LANA enhanced the degradation of some RLIM substrates, such as LDB1 and LMO2, and prevented RLIM-mediated degradation of others, such as LHX3 and TRF1. We also show that transcription regulation by RLIM substrates is modulated by LANA. RLIM substrates are assembled into multiprotein transcription regulator complexes that regulate the expression of many cellular genes. Therefore, our study identified another way KSHV can modulate cellular gene expression. IMPORTANCE E3 ubiquitin ligases mark their substrates for degradation and therefore control the cellular abundance of their substrates. RLIM is an E3 ubiquitin ligase that leads to the ubiquitination and degradation of several transcription regulators, such as LMO2, LMO4, LHX2, LHX3, LDB1, and the telomeric protein TRF1. Here, we show that the Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded LANA protein enhances the ubiquitin ligase activity of RLIM, leading to enhanced RLIM autoubiquitination and degradation. Interestingly, LANA enhanced the degradation of some RLIM substrates, such as LDB1 and LMO2, and prevented RLIM-mediated degradation of others, such as LHX3 and TRF1. In agreement with protein stability of RLIM substrates, we found that LANA modulates transcription by LHX3-LDB1 complex and suggest additional ways LANA can modulate cellular gene expression. Our study adds another way a viral protein can regulate cellular protein stability, by enhancing the autoubiquitination and degradation of an E3 ubiquitin ligase.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Dajiang Li ◽  
Tim Mosbruger ◽  
Dinesh Verma ◽  
Sankar Swaminathan

ABSTRACT CTCF and the cohesin complex modify chromatin by binding to DNA and interacting with each other and with other cellular proteins. Both proteins regulate transcription by a variety of local effects on transcription and by long-range topological effects. CTCF and cohesin also bind to herpesvirus genomes at specific sites and regulate viral transcription during latent and lytic cycles of replication. Kaposi’s sarcoma-associated herpesvirus (KSHV) transcription is regulated by CTCF and cohesin, with both proteins previously reported to act as restrictive factors for lytic cycle transcription and virion production. In this study, we examined the interdependence of CTCF and cohesin binding to the KSHV genome. Chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that cohesin binding to the KSHV genome is highly CTCF dependent, whereas CTCF binding does not require cohesin. Furthermore, depletion of CTCF leads to the almost complete dissociation of cohesin from sites at which they colocalize. Thus, previous studies that examined the effects of CTCF depletion actually represent the concomitant depletion of both CTCF and cohesin components. Analysis of the effects of single and combined depletion indicates that CTCF primarily activates KSHV lytic transcription, whereas cohesin has primarily inhibitory effects. Furthermore, CTCF or cohesin depletion was found to have regulatory effects on cellular gene expression relevant for the control of viral infection, with both proteins potentially facilitating the expression of multiple genes important in the innate immune response to viruses. Thus, CTCF and cohesin have both positive and negative effects on KSHV lytic replication as well as effects on the host cell that enhance antiviral defenses. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) is causally linked to Kaposi’s sarcoma and several lymphoproliferative diseases. KSHV, like other herpesviruses, intermittently reactivates from latency and enters a lytic cycle in which numerous lytic mRNAs and proteins are produced, culminating in infectious virion production. These lytic proteins may also contribute to tumorigenesis. Reactivation from latency is controlled by processes that restrict or activate the transcription of KSHV lytic genes. KSHV gene expression is modulated by binding of the host cell proteins CTCF and cohesin complex to the KSHV genome. These proteins bind to and modulate the conformation of chromatin, thereby regulating transcription. We have analyzed the interdependence of binding of CTCF and cohesin and demonstrate that while CTCF is required for cohesin binding to KSHV, they have very distinct effects, with cohesin primarily restricting KSHV lytic transcription. Furthermore, we show that cohesin and CTCF also exert effects on the host cell that promote antiviral defenses.


2020 ◽  
Vol 16 (12) ◽  
pp. e1009099
Author(s):  
Xiaoqin Wei ◽  
Jiazhen Dong ◽  
Chin-Chen Cheng ◽  
Mingjun Ji ◽  
Lei Yu ◽  
...  

Open reading frame (ORF) 45 is an outer tegument protein of Kaposi’s sarcoma-associated herpesvirus (KSHV). Genetic analysis of an ORF45-null mutant revealed that ORF45 plays a key role in the events leading to the release of KSHV particles. ORF45 associates with lipid rafts (LRs), which is responsible for the colocalization of viral particles with the trans-Golgi network and facilitates their release. In this study, we identified a host protein, RAB11 family interacting protein 5 (RAB11FIP5), that interacts with ORF45 in vitro and in vivo. RAB11FIP5 encodes a RAB11 effector protein that regulates endosomal trafficking. Overexpression of RAB11FIP5 in KSHV-infected cells decreased the expression level of ORF45 and inhibited the release of KSHV particles, as reflected by the significant reduction in the number of extracellular virions. In contrast, silencing endogenous RAB11FIP5 increased ORF45 expression and promoted the release of KSHV particles. We further showed that RAB11FIP5 mediates lysosomal degradation of ORF45, which impairs its ability to target LRs in the Golgi apparatus and inhibits ORF45-mediated colocalization of viral particles with the trans-Golgi network. Collectively, our results suggest that RAB11FIP5 enhances lysosome-dependent degradation of ORF45, which inhibits the release of KSHV particles, and have potential implications for virology and antiviral design.


2018 ◽  
Vol 92 (13) ◽  
Author(s):  
Tenaya K. Vallery ◽  
Johanna B. Withers ◽  
Joana A. Andoh ◽  
Joan A. Steitz

ABSTRACTKaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments.IMPORTANCELate in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus.


Sign in / Sign up

Export Citation Format

Share Document