scholarly journals Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1

2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Shanna L. Ashley ◽  
Carla D. Pretto ◽  
Matthew T. Stier ◽  
Padma Kadiyala ◽  
Luiza Castro-Jorge ◽  
...  

ABSTRACT Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro. Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice. IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and microglia, cell types in the neurovascular unit that can secrete MMPs. Ex vivo MAV-1 infection of these cell types caused higher MMP activity than mock infection, suggesting that they may contribute to the higher MMP activity seen in vivo. To our knowledge, this provides the first evidence of an encephalitic DNA virus in its natural host causing increased MMP activity in brains.

2017 ◽  
Vol 95 (3) ◽  
pp. 1313 ◽  
Author(s):  
L. Zhang ◽  
L. F. Schütz ◽  
C. L. Robinson ◽  
M. L. Totty ◽  
L. J. Spicer

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


Reproduction ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 867-877 ◽  
Author(s):  
Gerard A Tarulli ◽  
Sarah J Meachem ◽  
Stefan Schlatt ◽  
Peter G Stanton

This study aimed to assess the effect of gonadotrophin suppression and FSH replacement on testicular tight junction dynamics and blood–testis barrier (BTB) organisation in vivo, utilising the seasonal breeding Djungarian hamster. Confocal immunohistology was used to assess the cellular organisation of tight junction proteins and real-time PCR to quantify tight junction mRNA. The effect of tight junction protein organisation on the BTB permeability was also investigated using a biotin-linked tracer. Tight junction protein (claudin-3, junctional adhesion molecule (JAM)-A and occludin) localisation was present but disorganised after gonadotrophin suppression, while mRNA levels (claudin-11, claudin-3 and occludin) were significantly (two- to threefold) increased. By contrast, both protein localisation and mRNA levels for the adaptor protein zona occludens-1 decreased after gonadotrophin suppression. FSH replacement induced a rapid reorganisation of tight junction protein localisation. The functionality of the BTB (as inferred by biotin tracer permeation) was found to be strongly associated with the organisation and localisation of claudin-11. Surprisingly, JAM-A was also recognised on spermatogonia, suggesting an additional novel role for this protein in trans-epithelial migration of germ cells across the BTB. It is concluded that gonadotrophin regulation of tight junction proteins forming the BTB occurs primarily at the level of protein organisation and not gene transcription in this species, and that immunolocalisation of the organised tight junction protein claudin-11 correlates with BTB functionality.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115981 ◽  
Author(s):  
Shijie Jin ◽  
Yoshifumi Sonobe ◽  
Jun Kawanokuchi ◽  
Hiroshi Horiuchi ◽  
Yi Cheng ◽  
...  

2009 ◽  
Vol 29 (9) ◽  
pp. 1559-1567 ◽  
Author(s):  
Jin Hyoung Kim ◽  
Jeong Hun Kim ◽  
You Mie Lee ◽  
Eun-Mi Ahn ◽  
Kyu-Won Kim ◽  
...  

The blood—retinal barrier (BRB) is essential for the normal structural and functional integrity of the retina, whose breakdown could cause the serious vision loss. Vascular endothelial growth factor (VEGF), as a permeable factor, induces alteration of tight junction proteins to result in BRB breakdown. Herein, we demonstrated that decursin inhibits VEGF-mediated inner BRB breakdown through suppression of VEGFR-2 signaling pathway. In retinal endothelial cells, decursin inhibited VEGF-mediated hyperpermeability. Decursin prevented VEGF-mediated loss of tight junction proteins including zonula occludens-1 (ZO-1), ZO-2, and occludin in retinal endothelial cells, which was also supported by restoration of tight junction proteins in intercellular junction. In addition, decursin significantly inhibited VEGF-mediated vascular leakage from retinal vessels, which was accompanied by prevention of loss of tight junction proteins in retinal vessels. Decursin significantly suppressed VEGF-induced VEGFR-2 phosphrylation that consequently led to inhibition of extracellular signal-regulated kinase (ERK) 1/2 activation. Moreover, decursin induced no cytotoxicity to retinal endothelial cells and no retinal toxicity under therapeutic concentrations. Therefore, our results suggest that decursin prevents VEGF-mediated BRB breakdown through blocking of loss of tight junction proteins, which might be regulated by suppression of VEGFR-2 activation. As a novel inhibitor to BRB breakdown, decursin could be applied to variable retinopathies with BRB breakdown.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Françoise Carlotti ◽  
Arnaud Zaldumbide ◽  
Johanne H. Ellenbroek ◽  
H. Siebe Spijker ◽  
Rob C. Hoeben ◽  
...  

β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources ofβcells. Islet regenerationin vivoand generation ofβ-cellsex vivofollowed by transplantation represent attractive therapeutic alternatives to restore theβ-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for futureβ-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (bothex vivoon primary cells andin vivoon animal models), when compared with clinical data and studies performed on human cells.


Author(s):  
Gema Sánchez Helguera ◽  
Anthony Silva ◽  
Raquel Murillo ◽  
Antonio Ferruelo ◽  
José A. Lorente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document