scholarly journals In Vitro and In Vivo Evaluation of Human Adenovirus Type 49 as a Vector for Therapeutic Applications

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.

Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of preexisting immunity detected across screened populations. However, many aspects of the basic virology of species D, such as their cellular tropism, receptor usage and in vivo biodistribution profile, remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49), a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen whilst avoiding liver interactions, such as intravascular vaccine applications.


Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of preexisting immunity detected across screened populations. However, many aspects of the basic virology of species D, such as their cellular tropism, receptor usage and in vivo biodistribution profile, remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49), a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen whilst avoiding liver interactions, such as intravascular vaccine applications.


2005 ◽  
Vol 79 (8) ◽  
pp. 5090-5104 ◽  
Author(s):  
Daniel Stone ◽  
Shaoheng Ni ◽  
Zong-Yi Li ◽  
Anuj Gaggar ◽  
Nelson DiPaolo ◽  
...  

ABSTRACT Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism.


2005 ◽  
Vol 49 (11) ◽  
pp. 4689-4699 ◽  
Author(s):  
L. Lenaerts ◽  
E. Verbeken ◽  
E. De Clercq ◽  
L. Naesens

ABSTRACT The importance of human adenovirus infections in immunocompromised patients urges for new and adequate antiadenovirus compounds. Since human adenoviruses are species specific, animal models for systemic adenovirus infections rely on a nonhuman adenovirus. We established mouse adenovirus type 1 (MAV-1) infection of BALB/c SCID mice as a model for the evaluation of antiadenovirus therapy. In vitro studies with mouse embryonic fibroblasts pointed to the acyclic nucleoside phosphonate cidofovir and the N-7-substituted acyclic derivative 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine (S-2242) as markedly active compounds against MAV-1. SCID mice, infected intranasally with MAV-1, developed a fatal disseminated infection after approximately 19 days, characterized by hemorrhagic enteritis. Several techniques were optimized to monitor viral, immunological, and pathological aspects of MAV-1 infection. Real-time PCR quantification of viral DNA revealed that after replication in the lungs, virus disseminated to several organs, including the brain, liver, spleen, intestine, heart, and kidneys (resulting in viruria). Immunohistochemical staining showed that MAV-1 was localized in the endothelial cells of the affected organs. Using reverse transcription-PCR, tissue levels of proinflammatory cytokines (i.e., interleukin-1β and tumor necrosis factor alpha) were found to be markedly increased. The MAV-1/SCID model appears to be an appropriate model for in vivo evaluation of antiadenovirus agents. Treatment with cidofovir or S-2242 at a dose of 100 mg per kg of body weight resulted in a significant delay in MAV-1-related death, although these antivirals were unable to completely suppress virus replication despite continued drug treatment. These findings suggest that complete virus clearance during antiviral therapy for disseminated adenovirus infection may require an efficient adaptive immune response from the host.


Vaccine ◽  
2009 ◽  
Vol 27 (20) ◽  
pp. 2662-2668 ◽  
Author(s):  
M. Kimberly Knowles ◽  
Danielle Roberts ◽  
Sheona Craig ◽  
Mary Sheen ◽  
Susan A. Nadin-Davis ◽  
...  

2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


2019 ◽  
Vol 36 (7) ◽  
pp. 603-621 ◽  
Author(s):  
Aashu Gupta ◽  
Kritika Nayak ◽  
Manju Misra
Keyword(s):  
Ex Vivo ◽  

2000 ◽  
Vol 20 (5_suppl) ◽  
pp. 5-9 ◽  
Author(s):  
C.J. Holmes

Pre-clinical biocompatibility testing of peritoneal dialysis (PD) solutions has become an integral part of new solution development. The construction of a pre-clinical screening program for solution biocompatibility should take a hierarchical approach, starting with in vitro cell viability and function assays. The selection of cell types and assay systems for the in vitro studies should be broad enough to permit a balanced interpretation. Whenever possible, animal models are recommended for the next hierarchical level of testing, followed by human ex vivo study designs. Designs of the latter sort provide evidence that a new solution formulation is exerting an altered biological response in vivo; the response is not purely an in vitro artifact or restricted to a given animal species. This article discusses the various approaches available for biocompatibility testing during the pre-clinical phase of solution development, with an emphasis on the advantages and drawbacks of each method.


Sign in / Sign up

Export Citation Format

Share Document