scholarly journals In Vivo Validation of the Viral Barcoding of Simian Immunodeficiency Virus SIVmac239 and the Development of New Barcoded SIV and Subtype B and C Simian-Human Immunodeficiency Viruses

2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Sirish Khanal ◽  
Christine M. Fennessey ◽  
Sean P. O’Brien ◽  
Abigail Thorpe ◽  
Carolyn Reid ◽  
...  

ABSTRACT Genetically barcoded viral populations are powerful tools for evaluating the overall viral population structure as well as assessing the dynamics and evolution of individual lineages in vivo over time. Barcoded viruses are generated by inserting a small, genetically unique tag into the viral genome, which is retained in progeny virus. We recently reported barcoding the well-characterized molecular clone simian immunodeficiency virus (SIV) SIVmac239, resulting in a synthetic swarm (SIVmac239M) containing approximately 10,000 distinct viral clonotypes for which all genetic differences were within a 34-base barcode that could be tracked using next-generation deep sequencing. Here, we assessed the population size, distribution, and authenticity of individual viral clonotypes within this synthetic swarm using samples from 120 rhesus macaques infected intravenously. The number of replicating barcodes in plasma correlated with the infectious inoculum dose, and the primary viral growth rate was similar in all infected animals regardless of the inoculum size. Overall, 97% of detectable clonotypes in the viral stock were identified in the plasma of at least one infected animal. Additionally, we prepared a second-generation barcoded SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and an additional barcoded stock with suboptimal nucleotides corrected (SIVmac239Opt5M). We also generated four barcoded stocks from subtype B and C simian-human immunodeficiency virus (SHIV) clones. These new SHIV clones may be particularly valuable models to evaluate Env-targeting approaches to study viral transmission or viral reservoir clearance. Overall, this work further establishes the reliability of the barcoded virus approach and highlights the feasibility of adapting this technique to other viral clones. IMPORTANCE We recently developed and published a description of a barcoded simian immunodeficiency virus that has a short random sequence inserted directly into the viral genome. This allows for the tracking of individual viral lineages with high fidelity and ultradeep sensitivity. This virus was used to infect 120 rhesus macaques, and we report here the analysis of the barcodes of these animals during primary infection. We found that the vast majority of barcodes were functional in vivo. We then expanded the barcoding approach in a second-generation SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and a barcoded stock of SIVmac239Opt5M whose sequence had 5 changes from the wild-type SIVmac239 sequence. We also generated 4 barcoded stocks from subtype B and C SHIV clones each containing a human immunodeficiency virus (HIV) type 1 envelope. These virus models are functional and can be useful for studying viral transmission and HIV cure/reservoir research.

1998 ◽  
Vol 72 (6) ◽  
pp. 5035-5045 ◽  
Author(s):  
Linqi Zhang ◽  
Tian He ◽  
Andrew Talal ◽  
Gloria Wang ◽  
Sarah S. Frankel ◽  
...  

ABSTRACT We have evaluated the in vivo distribution of the major human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) coreceptors, CXCR4, CCR3, and CCR5, in both rhesus macaques and humans. T lymphocytes and macrophages in both lymphoid and nonlymphoid tissues are the major cell populations expressing HIV/SIV coreceptors, reaffirming that these cells are the major targets of HIV/SIV infection in vivo. In lymphoid tissues such as the lymph node and the thymus, approximately 1 to 10% of the T lymphocytes and macrophages are coreceptor positive. However, coreceptor expression was not detected on follicular dendritic cells (FDC) in lymph nodes, suggesting that the ability of FDC to trap extracellular virions is unlikely to be mediated by a coreceptor-specific mechanism. In the thymus, a large number of immature and mature T lymphocytes express CXCR4, which may render these cells susceptible to infection by syncytium-inducing viral variants that use this coreceptor for entry. In addition, various degrees of coreceptor expression are found among different tissues and also among different cells within the same tissues. Coreceptor-positive cells are more frequently identified in the colon than in the rectum and more frequently identified in the cervix than in the vagina, suggesting that the expression levels of coreceptors are differentially regulated at different anatomic sites. Furthermore, extremely high levels of CXCR4 and CCR3 expression are found on the neurons from both the central and peripheral nervous systems. These findings may be helpful in understanding certain aspects of HIV and SIV pathogenesis and transmission.


1998 ◽  
Vol 72 (4) ◽  
pp. 3248-3258 ◽  
Author(s):  
Christopher J. Miller ◽  
Marta Marthas ◽  
Jennifer Greenier ◽  
Ding Lu ◽  
Peter J. Dailey ◽  
...  

ABSTRACT We used the rhesus macaque model of heterosexual human immunodeficiency virus (HIV) transmission to test the hypothesis that in vitro measures of macrophage tropism predict the ability of a primate lentivirus to initiate a systemic infection after intravaginal inoculation. A single atraumatic intravaginal inoculation with a T-cell-tropic molecular clone of simian immunodeficiency virus (SIV), SIVmac239, or a dualtropic recombinant molecular clone of SIV, SIVmac239/1A11/239, or uncloned dualtropic SIVmac251 or uncloned dualtropic simian/human immunodeficiency virus (SHIV) 89.6-PD produced systemic infection in all rhesus macaques tested. However, vaginal inoculation with a dualtropic molecular clone of SIV, SIVmac1A11, resulted in transient viremia in one of two rhesus macaques. It has previously been shown that 12 intravaginal inoculations with SIVmac1A11 resulted in infection of one of five rhesus macaques (M. L. Marthas, C. J. Miller, S. Sutjipto, J. Higgins, J. Torten, B. L. Lohman, R. E. Unger, H. Kiyono, J. R. McGhee, P. A. Marx, and N. C. Pedersen, J. Med. Primatol. 21:99–107, 1992). In addition, SHIV HXBc2, which replicates in monkey macrophages, does not infect rhesus macaques following multiple vaginal inoculations, while T-cell-tropic SHIV 89.6 does (Y. Lu, P. B. Brosio, M. Lafaile, J. Li, R. G. Collman, J. Sodroski, and C. J. Miller, J. Virol. 70:3045–3050, 1996). These results demonstrate that in vitro measures of macrophage tropism do not predict if a SIV or SHIV will produce systemic infection after intravaginal inoculation of rhesus macaques. However, we did find that the level to which these viruses replicate in vivo after intravenous inoculation predicts the outcome of intravaginal inoculation with each virus.


2006 ◽  
Vol 81 (1) ◽  
pp. 406-410 ◽  
Author(s):  
Jason A. Wojcechowskyj ◽  
Levi J. Yant ◽  
Roger W. Wiseman ◽  
Shelby L. O'Connor ◽  
David H. O'Connor

ABSTRACT It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome.


2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Julia B. McBrien ◽  
Andrew K. H. Wong ◽  
Erick White ◽  
Diane G. Carnathan ◽  
John H. Lee ◽  
...  

ABSTRACT The “shock and kill” strategy predicates that virus reactivation in latently infected cells is required to eliminate the human immunodeficiency virus (HIV) reservoir. In a recent study, we showed robust and persistent induction of plasma viremia in antiretroviral therapy (ART)-treated simian immunodeficiency virus-infected rhesus macaques (RMs) undergoing CD8α depletion and treated with the interleukin-15 (IL-15) superagonist N-803 (J. B. McBrien et al., Nature 578:154–159, 2020, https://doi.org/10.1038/s41586-020-1946-0). Of note, in that study we used an antibody targeting CD8α, thereby depleting NK cells, NKT cells, and γδ T cells, in addition to CD8+ T cells. In the current proof-of-concept study, we tested whether virus reactivation can be induced by administration of N-803 to simian-human chimeric immunodeficiency virus-infected, ART-treated RMs that are selectively depleted of CD8+ T cells via the CD8β-targeting antibody CD8b255R1. CD8β depletion was performed in five SHIVSF162P3-infected RMs treated with ART for 12 months and with plasma viremia consistently below 3 copies/ml. All animals received four weekly doses of N-803 starting at the time of CD8b255R1 administration. The induction of detectable plasma viremia was observed in three out of five RMs, with the level of virus reactivation seemingly correlated with the frequency of CD8+ T cells following CD8β depletion as well as the level of virus reactivation observed when the same animals underwent CD8α depletion and N-803 administration after 24 weeks of ART. These data indicate that CD8β depletion and N-803 administration can induce virus reactivation in SHIVSF162P3-infected RMs despite suboptimal depletion of CD8+ T cells and profound ART-induced suppression of virus replication, confirming a critical role for these cells in suppressing virus production and/or reactivation in vivo under ART. IMPORTANCE The “shock and kill” HIV cure strategy attempts to reverse and eliminate the latent viral infection that prevents eradication of the virus. Latency-reversing agents tested in clinical trials to date have failed to affect the HIV viral reservoir. IL-15 superagonist N-803, currently involved in a clinical trial for HIV cure, was recently shown by our laboratory to induce robust and persistent induction of plasma viremia during ART in three in vivo animal models of HIV infection. These results suggest a substantial role for CD8+ lymphocytes in suppressing the latency reversal effect of N-803 by promoting the maintenance of viral latency. In this study, we tested whether the use of a CD8β-targeting antibody, which would specifically deplete CD8+ T cells, would yield similar levels of virus reactivation. We observed the induction of plasma viremia, which correlated with the efficacy of the CD8 depletion strategy.


2010 ◽  
Vol 84 (15) ◽  
pp. 7886-7891 ◽  
Author(s):  
Levelle D. Harris ◽  
Brian Tabb ◽  
Donald L. Sodora ◽  
Mirko Paiardini ◽  
Nichole R. Klatt ◽  
...  

ABSTRACT The mechanisms underlying the AIDS resistance of natural hosts for simian immunodeficiency virus (SIV) remain unknown. Recently, it was proposed that natural SIV hosts avoid disease because their plasmacytoid dendritic cells (pDCs) are intrinsically unable to produce alpha interferon (IFN-α) in response to SIV RNA stimulation. However, here we show that (i) acute SIV infections of natural hosts are associated with a rapid and robust type I IFN response in vivo, (ii) pDCs are the principal in vivo producers of IFN-α/β at peak acute infection in lymphatic tissues, and (iii) natural SIV hosts downregulate these responses in early chronic infection. In contrast, persistently high type I IFN responses are observed during pathogenic SIV infection of rhesus macaques.


2010 ◽  
Vol 84 (9) ◽  
pp. 4840-4844 ◽  
Author(s):  
Qiujia Shao ◽  
Yudi Wang ◽  
James E. K. Hildreth ◽  
Bindong Liu

ABSTRACT Proteasomal degradation of APOBEC3G is a critical step for human immunodeficiency virus type 1 (HIV-1) replication. However, the necessity for polyubiquitination of APOBEC3G in this process is still controversial. In this study, we showed that although macaque simian immunodeficiency virus (SIVmac) Vif is more stable than HIV-1 Vif in human cells, SIVmac Vif induces degradation of APBOEC3G as efficiently as HIV-1 Vif. Overexpression of APOBEC3G or lysine-free APOBEC3G stabilized HIV-1 Vif, indicating that APOBEC3G degradation is independent of the degradation of Vif. Furthermore, an in vivo polyubiquitination assay showed that lysine-free APOBEC3G was also polyubiquitinated. These data suggest that polyubiquitination of APOBEC3G, not that of HIV-1 Vif, is crucial for APOBEC3G degradation.


2008 ◽  
Vol 82 (22) ◽  
pp. 11181-11196 ◽  
Author(s):  
Meritxell Genescà ◽  
Pamela J. Skinner ◽  
Jung Joo Hong ◽  
Jun Li ◽  
Ding Lu ◽  
...  

ABSTRACT The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8+ T-cell response in SHIV-immunized monkeys by CD8+ lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8+ T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8+ T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8+ T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8+ T cells can provide significant protection from vaginal SIV challenge.


1999 ◽  
Vol 191 (11) ◽  
pp. 1921-1932 ◽  
Author(s):  
Karin J. Metzner ◽  
Xia Jin ◽  
Fred V. Lee ◽  
Agegnehu Gettie ◽  
Daniel E. Bauer ◽  
...  

The role of CD8+ T lymphocytes in controlling replication of live, attenuated simian immunodeficiency virus (SIV) was investigated as part of a vaccine study to examine the correlates of protection in the SIV/rhesus macaque model. Rhesus macaques immunized for >2 yr with nef-deleted SIV (SIVmac239Δnef) and protected from challenge with pathogenic SIVmac251 were treated with anti-CD8 antibody (OKT8F) to deplete CD8+ T cells in vivo. The effects of CD8 depletion on viral load were measured using a novel quantitative assay based on real-time polymerase chain reaction using molecular beacons. This assay allows simultaneous detection of both the vaccine strain and the challenge virus in the same sample, enabling direct quantification of changes in each viral population. Our results show that CD8+ T cells were depleted within 1 h after administration of OKT8F, and were reduced by as much as 99% in the peripheral blood. CD8+ T cell depletion was associated with a 1–2 log increase in SIVmac239Δnef plasma viremia. Control of SIVmac239Δnef replication was temporally associated with the recovery of CD8+ T cells between days 8 and 10. The challenge virus, SIVmac251, was not detectable in either the plasma or lymph nodes after depletion of CD8+ T cells. Overall, our results indicate that CD8+ T cells play an important role in controlling replication of live, attenuated SIV in vivo.


Sign in / Sign up

Export Citation Format

Share Document