scholarly journals Hemagglutinin-Pseudotyped Green Fluorescent Protein-Expressing Influenza Viruses for the Detection of Influenza Virus Neutralizing Antibodies

2009 ◽  
Vol 84 (4) ◽  
pp. 2157-2163 ◽  
Author(s):  
Luis Martínez-Sobrido ◽  
Richard Cadagan ◽  
John Steel ◽  
Christopher F. Basler ◽  
Peter Palese ◽  
...  

ABSTRACT Influenza virus is a highly contagious virus that causes yearly epidemics and occasional pandemics of great consequence. Influenza virus neutralizing antibodies (NAbs) are promising prophylactic and therapeutic reagents. Detection of NAbs in serum samples is critical to evaluate the prevalence and spread of new virus strains. Here we describe the development of a simple, sensitive, specific, and safe screening assay for the rapid detection of NAbs against highly pathogenic influenza viruses under biosafety level 2 (BSL-2) conditions. This assay is based on the use of influenza viruses in which the hemagglutinin (HA) gene is replaced by a gene expressing green fluorescent protein (GFP). These GFP-expressing influenza viruses replicate to high titers in HA-expressing cell lines, but in non-HA-expressing cells, their replication is restricted to a single cycle.

2004 ◽  
Vol 11 (2) ◽  
pp. 406-410 ◽  
Author(s):  
Antonio Cosma ◽  
Silja Bühler ◽  
Rashmi Nagaraj ◽  
Caroline Staib ◽  
Anna-Lena Hammarin ◽  
...  

ABSTRACT Vaccination against smallpox is again considered in order to face a possible bioterrorist threat, but the nature and the level of the immune response needed to protect a person from smallpox after vaccination are not totally understood. Therefore, simple, rapid, and accurate assays to evaluate the immune response to vaccinia virus need to be developed. Neutralization assays are usually considered good predictors of vaccine efficacy and more informative with regard to protection than binding assays. Currently, the presence of neutralizing antibodies to vaccinia virus is measured using a plaque reduction neutralization test, but this method is time-consuming and labor-intensive and has a subjective readout. Here, we describe an innovative neutralization assay based on a modified vaccinia virus Ankara (MVA) vector expressing the green fluorescent protein (MVA-gfp). This MVA-gfp neutralization assay is rapid and sensitive and has a high-throughput potential. Thus, it is suitable to monitor the immune response and eventually the efficacy of a large campaign of vaccination against smallpox and to study the vector-specific immune response in clinical trials that use genetically engineered vaccinia viruses. Most importantly, application of the highly attenuated MVA eliminates the safety concern in using the replication-competent vaccinia virus in the standard clinical laboratory.


Biologicals ◽  
2019 ◽  
Vol 59 ◽  
pp. 56-61 ◽  
Author(s):  
Shuyun Qin ◽  
Dmitriy Volokhov ◽  
Elvira Rodionova ◽  
Christoph Wirblich ◽  
Matthias J. Schnell ◽  
...  

2005 ◽  
Vol 86 (12) ◽  
pp. 3201-3208 ◽  
Author(s):  
Long P. Le ◽  
Jing Li ◽  
Vladimir V. Ternovoi ◽  
Gene P. Siegal ◽  
David T. Curiel

Canine adenovirus type 2 (CAV2) has become an attractive vector for gene therapy because of its non-pathogenicity and the lack of pre-existing neutralizing antibodies against this virus in the human population. Additionally, this vector has been proposed as a conditionally replicative adenovirus agent under the control of an osteocalcin promoter for evaluation in a syngeneic, immunocompetent canine model with spontaneous osteosarcoma. In this study, a CAV2 vector labelled with the fluorescent capsid fusion protein IX–enhanced green fluorescent protein (pIX–EGFP) was developed. Expression of the fluorescent fusion-protein label in infected cells with proper nuclear localization, and incorporation into virions, could be detected. The labelled virions could be visualized by fluorescence microscopy; this was applicable to the tracking of CAV2 infection, as well as localizing the distribution of the vector in tissues. Expression of pIX–EGFP could be exploited to detect the replication and spread of CAV2. These results indicate that pIX can serve as a platform for incorporation of heterologous proteins in the context of a canine adenovirus xenotype. It is believed that capsid-labelled CAV2 has utility for vector-development studies and for monitoring CAV2-based oncolytic adenovirus replication.


1999 ◽  
Vol 73 (8) ◽  
pp. 6937-6945 ◽  
Author(s):  
Eli Boritz ◽  
Jennifer Gerlach ◽  
J. Erik Johnson ◽  
John K. Rose

ABSTRACT We describe a replication-competent, recombinant vesicular stomatitis virus (VSV) in which the gene encoding the single transmembrane glycoprotein (G) was deleted and replaced by anenv-G hybrid gene encoding the extracellular and transmembrane domains of a human immunodeficiency virus type 1 (HIV-1) envelope protein fused to the cytoplasmic domain of VSV G. An additional gene encoding a green fluorescent protein was added to permit rapid detection of infection. This novel surrogate virus infected and propagated on cells expressing the HIV receptor CD4 and coreceptor CXCR4. Infection was blocked by SDF-1, the ligand for CXCR4, by antibody to CD4 and by HIV-neutralizing antibody. This virus, unlike VSV, entered cells by a pH-independent pathway and thus supports a pH-independent pathway of HIV entry. Additional recombinants carrying hybrid env-G genes derived from R5 or X4R5 HIV strains also showed the coreceptor specificities of the HIV strains from which they were derived. These surrogate viruses provide a simple and rapid assay for HIV-neutralizing antibodies as well as a rapid screen for molecules that would interfere with any stage of HIV binding or entry. The viruses might also be useful as HIV vaccines. Our results suggest wide applications of other surrogate viruses based on VSV.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2269 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P. Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2is a soluble [Ni–Fe] uptake hydrogenase (SH) produced byCupriavidus necatorH16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSHpromoter activity using several gene cloning approaches. A PSHpromoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSHpromoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinantC. necatorH16 cells. Here we report the first successful fluorescent reporter system to study PSHpromoter activity inC. necatorH16. The fusion construct allowed for the design of a simple screening assay to evaluate PSHactivity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


2003 ◽  
Vol 77 (19) ◽  
pp. 10575-10583 ◽  
Author(s):  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
Takeshi Noda ◽  
Yutaka Fujii ◽  
Yoshihiro Kawaoka

ABSTRACT At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3′ end of the coding region and 80 nucleotides at the 5′ end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.


2016 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni-Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


2016 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni-Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


Sign in / Sign up

Export Citation Format

Share Document