Novel reverse genetics of genotype I and III Japanese encephalitis viruses assembled through transformation associated recombination in yeast: The reporter viruses expressing a green fluorescent protein for the antiviral screening assay

2021 ◽  
pp. 105233
Author(s):  
Chenxi Li ◽  
Xuan Chen ◽  
Yanyang Zhou ◽  
Jingbo Hu ◽  
Xinjie Wang ◽  
...  
Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 655 ◽  
Author(s):  
Yíngyún Caì ◽  
Masaharu Iwasaki ◽  
Brett Beitzel ◽  
Shuīqìng Yú ◽  
Elena Postnikova ◽  
...  

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000–300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2269 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P. Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2is a soluble [Ni–Fe] uptake hydrogenase (SH) produced byCupriavidus necatorH16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSHpromoter activity using several gene cloning approaches. A PSHpromoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSHpromoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinantC. necatorH16 cells. Here we report the first successful fluorescent reporter system to study PSHpromoter activity inC. necatorH16. The fusion construct allowed for the design of a simple screening assay to evaluate PSHactivity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


2009 ◽  
Vol 84 (4) ◽  
pp. 2157-2163 ◽  
Author(s):  
Luis Martínez-Sobrido ◽  
Richard Cadagan ◽  
John Steel ◽  
Christopher F. Basler ◽  
Peter Palese ◽  
...  

ABSTRACT Influenza virus is a highly contagious virus that causes yearly epidemics and occasional pandemics of great consequence. Influenza virus neutralizing antibodies (NAbs) are promising prophylactic and therapeutic reagents. Detection of NAbs in serum samples is critical to evaluate the prevalence and spread of new virus strains. Here we describe the development of a simple, sensitive, specific, and safe screening assay for the rapid detection of NAbs against highly pathogenic influenza viruses under biosafety level 2 (BSL-2) conditions. This assay is based on the use of influenza viruses in which the hemagglutinin (HA) gene is replaced by a gene expressing green fluorescent protein (GFP). These GFP-expressing influenza viruses replicate to high titers in HA-expressing cell lines, but in non-HA-expressing cells, their replication is restricted to a single cycle.


2016 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni-Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


Virology ◽  
2015 ◽  
Vol 484 ◽  
pp. 259-264 ◽  
Author(s):  
César G. Albariño ◽  
Lisa Wiggleton Guerrero ◽  
Michael K. Lo ◽  
Stuart T. Nichol ◽  
Jonathan S. Towner

2016 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni-Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


Sign in / Sign up

Export Citation Format

Share Document