scholarly journals Genetic Variability of Long Terminal Repeat Region between HIV-2 Groups Impacts Transcriptional Activity

2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Quentin Le Hingrat ◽  
Benoit Visseaux ◽  
Mélanie Bertine ◽  
Lise Chauveau ◽  
Olivier Schwartz ◽  
...  

ABSTRACT The HIV-2 long terminal repeat (LTR) region contains several transcription factor (TF) binding sites. Efficient LTR transactivation by cellular TF and viral proteins is crucial for HIV-2 reactivation and viral production. Proviral LTRs from 66 antiretroviral-naive HIV-2-infected patients included in the French ANRS HIV-2 CO5 Cohort were sequenced. High genetic variability within the HIV-2 LTR was observed, notably in the U3 subregion, the subregion encompassing most known TF binding sites. Genetic variability was significantly higher in HIV-2 group B than in group A viruses. Notably, all group B viruses lacked the peri-ETS binding site, and 4 group B sequences (11%) also presented a complete deletion of the first Sp1 binding site. The lack of a peri-ETS binding site was responsible for lower transcriptional activity in activated T lymphocytes, while deletion of the first Sp1 binding site lowered basal or Tat-mediated transcriptional activities, depending on the cell line. Interestingly, the HIV-2 cellular reservoir was less frequently quantifiable in patients infected by group B viruses and, when quantifiable, the reservoirs were significantly smaller than in patients infected by group A viruses. Our findings suggest that mutations observed in vivo in HIV-2 LTR sequences are associated with differences in transcriptional activity and may explain the small cellular reservoirs in patients infected by HIV-2 group B, providing new insight into the reduced pathogenicity of HIV-2 infection. IMPORTANCE Over 1 million patients are infected with HIV-2, which is often described as an attenuated retroviral infection. Patients frequently have undetectable viremia and evolve at more slowly toward AIDS than HIV-1-infected patients. Several studies have reported a smaller viral reservoir in peripheral blood mononuclear cells in HIV-2-infected patients than in HIV-1-infected patients, while others have found similar sizes of reservoirs but a reduced amount of cell-associated RNA, suggesting a block in HIV-2 transcription. Recent studies have found associations between mutations within the HIV-1 LTR and reduced transcriptional activities. Until now, mutations within the HIV-2 LTR region have scarcely been studied. We conducted this research to discover if such mutations exist in the HIV-2 LTR and their potential association with the viral reservoir and transcriptional activity. Our study indicates that transcription of HIV-2 group B proviruses may be impaired, which might explain the small viral reservoir observed in patients.

1999 ◽  
Vol 73 (2) ◽  
pp. 1331-1340 ◽  
Author(s):  
Koen Verhoef ◽  
Rogier W. Sanders ◽  
Veronique Fontaine ◽  
Shigetaka Kitajima ◽  
Ben Berkhout

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) transcription is regulated by the viral Tat protein and cellular factors, of which the concentration and activity may depend on the cell type. Viral long terminal repeat (LTR) promoter sequences are therefore optimized to suit the specific nuclear environment of the target host cell. In long-term cultures of a Tat-defective, poorly replicating HIV-1 mutant, we selected for a faster-replicating virus with a 1-nucleotide deletion in the upstream copy of two highly conserved NF-κB binding sites. The variant enhancer sequence demonstrated a severe loss of NF-κB binding in protein binding assays. Interestingly, we observed a new binding activity that is specific for the variant NF-κB sequence and is present in the nuclear extract of unstimulated cells that lack NF-κB. These results suggest that inactivation of the NF-κB site coincides with binding of another transcription factor. Fine mapping of the sequence requirements for binding of this factor revealed a core sequence similar to that of Ets binding sites, and supershift assays with antibodies demonstrated the involvement of the GABP transcription factor. Transient transfection experiments with LTR-chloramphenicol acetyltransferase constructs indicated that the variant LTR promoter is specifically inhibited by GABP in the absence of Tat, but this promoter was dramatically more responsive to Tat than the wild-type LTR. Introduction of this GABP site into the LAI virus yielded a specific gain of fitness in SupT1 cells, which contain little NF-κB protein. These results suggest that GABP potentiates Tat-mediated activation of LTR transcription and viral replication in some cell types. Conversion of an NF-κB into a GABP binding site is likely to have occurred also during the worldwide spread of HIV-1, as we noticed the same LTR modification in subtype E isolates from Thailand. This typical LTR promoter configuration may provide these viruses with unique biological properties.


2008 ◽  
Vol 82 (7) ◽  
pp. 3632-3641 ◽  
Author(s):  
Marco Sgarbanti ◽  
Anna L. Remoli ◽  
Giulia Marsili ◽  
Barbara Ridolfi ◽  
Alessandra Borsetti ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) gene expression is controlled by a complex interplay between viral and host factors. We have previously shown that interferon-regulatory factor 1 (IRF-1) is stimulated early after HIV-1 infection and regulates promoter transcriptional activity even in the absence of the viral transactivator Tat. In this work we demonstrate that IRF-1 is also required for full NF-κB transcriptional activity. We provide evidence that IRF-1 and NF-κB form a functional complex at the long terminal repeat (LTR) κB sites, which is abolished by specific mutations in the two adjacent κB sites in the enhancer region. Silencing IRF-1 with small interfering RNA resulted in impaired NF-κB-mediated transcriptional activity and in repressed HIV-1 transcription early in de novo-infected T cells. These data indicate that in early phases of HIV-1 infection or during virus reactivation from latency, when the viral transactivator is absent or present at very low levels, IRF-1 is an additional component of the p50/p65 heterodimer binding the LTR enhancer, absolutely required for efficient HIV-1 replication.


1996 ◽  
Vol 52 (10) ◽  
pp. 1489-1498 ◽  
Author(s):  
Nicoletta Bianchi ◽  
Marco Passadore ◽  
Cristina Rutigliano ◽  
Giordana Feriotto ◽  
Carlo Mischiati ◽  
...  

2006 ◽  
Vol 80 (1) ◽  
pp. 332-341 ◽  
Author(s):  
Kathleen McGee-Estrada ◽  
Hung Fan

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a contagious lung cancer of sheep that arises from type II pneumocytes and Clara cells of the lung epithelium. Studies of the tropism of this virus have been hindered by the lack of an efficient system for viral replication in tissue culture. To map regulatory regions important for transcriptional activation, an in vivo footprinting method that couples dimethyl sulfate treatment and ligation-mediated PCR was performed in murine type II pneumocyte-derived MLE-15 cells infected with a chimeric Moloney murine leukemia virus driven by the JSRV enhancers (ΔMo+JS Mo-MuLV). In vivo footprints were found in the JSRV enhancers in two regions previously shown to be important for JSRV long terminal repeat (LTR) activity: a binding site for the lung-specific transcription factor HNF-3β and an E-box element in the distal enhancer adjacent to an NF-κB-like binding site. In addition, in vivo footprints were detected in two downstream motifs likely to bind C/EBP and NF-I. Mutational analysis of a JSRV LTR reporter construct (pJS21luc) revealed that the C/EBP binding site is critical for LTR activity, while the putative NF-I binding element is less important; elimination of these sites resulted in 70% and 40% drops in LTR activity, respectively. Electrophoretic mobility shift assays using nuclear extracts from MLE-15 murine Clara cell-derived mtCC1-2 cells with probes corresponding to the NF-I or C/EBP sites revealed several complexes. Antiserum directed against NF-IA, C/EBPα, or C/EBPβ supershifted the corresponding protein-DNA complexes, indicating that these isoforms, which are also important for the expression of several cellular lung-specific genes, may be important for JSRV expression in lung epithelial cells.


1989 ◽  
Vol 9 (11) ◽  
pp. 4759-4766
Author(s):  
F Tronche ◽  
A Rollier ◽  
I Bach ◽  
M C Weiss ◽  
M Yaniv

We have characterized in the accompanying paper (P. Herbomel, A. Rollier, F. Tronche, M.-O. Ott, M. Yaniv, and M. C. Weiss, Mol. Cell. Biol. 9:4750-4758, 1989) six different elements in the albumin promoter. One of them, the proximal element (PE), is the binding site for a strictly liver specific factor, APF/HNF1. This binding site contains a bacterial DAM DNA methylase methylation target sequence which, when methylated, decreases the affinity of the protein for this element. When the different albumin promoter constructions were prepared in an Escherichia coli deoxyadenosine methylase-negative strain, the respective contributions of the elements to the overall promoter activity were strikingly different. An intact proximal element plus the TATA box gave almost full transcriptional activity in transient transfection experiments and only in differentiated hepatoma cells of line H4II, whereas the distal elements (distal element III [DEIII], the NF1-binding site DEII, and the E/CBP-binding site DEI) had become essentially dispensable. Mutations affecting the CCAAT box showed only a two- to threefold decrease. When PE was methylated, mutated, or replaced by the homologous element from the alpha-fetoprotein gene, activity in the context of the short promoter (PE plus the TATA box) was abolished. However, activity was restored in the presence of the upstream elements, showing that cooperation with factors binding to the CCAAT box and distal elements favors the functional interaction of the liver-specific APF/HNF1 factor with lower-affinity binding sites.


1993 ◽  
Vol 13 (8) ◽  
pp. 5057-5069
Author(s):  
V Desai-Yajnik ◽  
H H Samuels

We report that thyroid hormone (T3) receptor (T3R) can activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). Purified chick T3R-alpha 1 (cT3R-alpha 1) binds as monomers and homodimers to a region in the LTR (nucleotides -104 to -75 [-104/-75]) which contains two tandem NF-kappa B binding sites and to a region (-80/-45) which contains three Sp1 binding sites. In contrast, human retinoic acid receptor alpha (RAR-alpha) and mouse retinoid X receptor beta (RXR-beta) do not bind to these elements. However, RXR-beta binds to these elements as heterodimers with cT3R-alpha 1 and to a lesser extent with RAR-alpha. Gel mobility shift assays also revealed that purified NF-kappa B p50/65 or p50/50 can bind to one but not both NF-kappa B sites simultaneously. Although the binding sites for p50/65, p50/50, and T3R, or Sp1 and T3R, overlap, their binding is mutually exclusive, and with the inclusion of RXR-beta, the major complex is the RXR-beta-cT3R-alpha 1 heterodimer. The NF-kappa B region of the LTR and the NF-kappa B elements from the kappa light chain enhancer both function as T3 response elements (TREs) when linked to a heterologous promoter. The TREs in the HIV-1 NF-kappa B sites appear to be organized as a direct repeat with an 8- or 10-bp gap between the half-sites. Mutations within the NF-kappa B motifs which eliminate binding of cT3R-alpha 1 also abolish stimulation by T3, indicating that cT3R-alpha 1 binding to the Sp1 region does not independently mediate activation by T3. The Sp1 region, however, is converted to a functionally strong TRE by the viral tat factor. These studies indicate that the HIV-1 LTR contains both tat-dependent and tat-independent TREs and reveal the potential for T3R to modulate other genes containing NF-kappa B- and Sp1-like elements. Furthermore, they indicate the importance of other transcription factors in determining whether certain T3R DNA binding sequences can function as an active TRE.


2004 ◽  
Vol 1030 (1) ◽  
pp. 636-643 ◽  
Author(s):  
GIULIA MARSILI ◽  
ANNA LISA REMOLI ◽  
MARCO SGARBANTI ◽  
ANGELA BATTISTINI

Sign in / Sign up

Export Citation Format

Share Document