Role of Acetylases and Deacetylase Inhibitors in IRF-1-Mediated HIV-1 Long Terminal Repeat Transcription

2004 ◽  
Vol 1030 (1) ◽  
pp. 636-643 ◽  
Author(s):  
GIULIA MARSILI ◽  
ANNA LISA REMOLI ◽  
MARCO SGARBANTI ◽  
ANGELA BATTISTINI
2006 ◽  
Vol 26 (22) ◽  
pp. 8242-8251 ◽  
Author(s):  
Oliver Siol ◽  
Moustapha Boutliliss ◽  
Thanh Chung ◽  
Gernot Glöckner ◽  
Theodor Dingermann ◽  
...  

ABSTRACT In the compact Dictyostelium discoideum genome, non-long terminal repeat (non-LTR) retrotransposons known as TREs avoid accidental integration-mediated gene disruption by targeting the vicinity of tRNA genes. In this study we provide the first evidence that proteins of a non-LTR retrotransposon interact with a target-specific transcription factor to direct its integration. We applied an in vivo selection system that allows for the isolation of natural TRE5-A integrations into a known genomic location upstream of tRNA genes. TRE5-A frequently modified the integration site in a way characteristic of other non-LTR retrotransposons by adding nontemplated extra nucleotides and generating small and extended target site deletions. Mutations within the B-box promoter of the targeted tRNA genes interfered with both the in vitro binding of RNA polymerase III transcription factor TFIIIC and the ability of TRE5-A to target these genes. An isolated B box was sufficient to enhance TRE5-A integration in the absence of a surrounding tRNA gene. The RNA polymerase III-transcribed ribosomal 5S gene recruits TFIIIC in a B-box-independent manner, yet it was readily targeted by TRE5-A in our assay. These results suggest a direct role of an RNA polymerase III transcription factor in the targeting process.


AIDS ◽  
1995 ◽  
Vol 9 (7) ◽  
pp. 675-684 ◽  
Author(s):  
Mounir Ait-Khaled ◽  
James E. McLaughlin ◽  
Margaret A. Johnson ◽  
Vincent C. Emery

2019 ◽  
Vol 47 (21) ◽  
pp. 11057-11068 ◽  
Author(s):  
Emanuela Ruggiero ◽  
Sara Lago ◽  
Primož Šket ◽  
Matteo Nadai ◽  
Ilaria Frasson ◽  
...  

Abstract I-motifs are non-canonical nucleic acids structures characterized by intercalated H-bonds between hemi-protonated cytosines. Evidence on the involvement of i-motif structures in the regulation of cellular processes in human cells has been consistently growing in the recent years. However, i-motifs within non-human genomes have never been investigated. Here, we report the characterization of i-motifs within the long terminal repeat (LTR) promoter of the HIV-1 proviral genome. Biophysical and biochemical analysis revealed formation of a predominant i-motif with an unprecedented loop composition. One-dimensional nuclear magnetic resonance investigation demonstrated formation of three G-C H-bonds in the long loop, which likely improve the structure overall stability. Pull-down experiments combined with mass spectrometry and protein crosslinking analysis showed that the LTR i-motif is recognized by the cellular protein hnRNP K, which induced folding at physiological conditions. In addition, hnRNP K silencing resulted in an increased LTR promoter activity, confirming the ability of the protein to stabilize the i-motif-forming sequence, which in turn regulates the LTR-mediated HIV-1 transcription. These findings provide new insights into the complexity of the HIV-1 virus and lay the basis for innovative antiviral drug design, based on the possibility to selectively recognize and target the HIV-1 LTR i-motif.


2008 ◽  
Vol 135 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Xiaoyun Wu ◽  
Musarat Ishaq ◽  
Jiajie Hu ◽  
Deyin Guo

Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 437-445 ◽  
Author(s):  
PM Cannon ◽  
DG Tenen ◽  
MB Feinberg ◽  
HS Shin ◽  
S Kim

Abstract As a model system to study the infection of early myeloid cells by human immunodeficiency virus-1 (HIV-1), we have infected the human promyelocytic cell line, HL-60, with a recombinant selectable HIV-1 clone. A fully infected population showed a relatively high frequency of low-level infection, with 40% of subcloned cells being negative by reverse transcriptase and p24 indirect immunofluorescence analysis and displaying only low levels of supernatant p24. The same treatment of a T-lymphoid cell line produced 100% productive infections. HIV-1 infection of HL-60 did not appear to alter the state of differentiation of the cells, as assessed by surface antigen expression, regardless of the level of viral expression. Furthermore, infected cells were able to respond normally to chemical inducers of differentiation. Induction of differentiation towards monocyte/macrophages by phorbol myristate acetate activated the HIV-1 long terminal repeat in a transient transfection system, and there was a corresponding increase in viral production from the infected subclones. Granulocytic differentiation, as stimulated by dimethyl sulfoxide or retinoic acid, had no effect on long terminal repeat activity and did not stimulate viral replication. These data suggest that low-level HIV-1 infections may be established at a relatively high frequency in myeloid precursor cells, and that different pathways of promyelocytic differentiation vary in their ability to stimulate HIV-1 replication.


Sign in / Sign up

Export Citation Format

Share Document