scholarly journals Expression of Interferon Gamma by a Recombinant Rabies Virus Strongly Attenuates the Pathogenicity of the Virus via Induction of Type I Interferon

2014 ◽  
Vol 89 (1) ◽  
pp. 312-322 ◽  
Author(s):  
Darryll A. Barkhouse ◽  
Samantha A. Garcia ◽  
Emily K. Bongiorno ◽  
Aurore Lebrun ◽  
Milosz Faber ◽  
...  

ABSTRACTPrevious animal model experiments have shown a correlation between interferon gamma (IFN-γ) expression and both survival from infection with attenuated rabies virus (RABV) and reduction of neurological sequelae. Therefore, we hypothesized that rapid production of murine IFN-γ by the rabies virus itself would induce a more robust antiviral response than would occur naturally in mice. To test this hypothesis, we used reverse engineering to clone the mouse IFN-γ gene into a pathogenic rabies virus backbone, SPBN, to produce the recombinant rabies virus designated SPBNγ. Morbidity and mortality were monitored in mice infected intranasally with SPBNγ or SPBN(−) control virus to determine the degree of attenuation caused by the expression of IFN-γ. Incorporation of IFN-γ into the rabies virus genome highly attenuated the virus. SPBNγ has a 50% lethal dose (LD50)more than 100-fold greater than SPBN(−).In vitroandin vivomouse experiments show that SPBNγ infection enhances the production of type I interferons. Furthermore, knockout mice lacking the ability to signal through the type I interferon receptor (IFNAR−/−) cannot control the SPBNγ infection and rapidly die. These data suggest that IFN-γ production has antiviral effects in rabies, largely due to the induction of type I interferons.IMPORTANCESurvival from rabies is dependent upon the early control of virus replication and spread. Once the virus reaches the central nervous system (CNS), this becomes highly problematic. Studies of CNS immunity to RABV have shown that control of replication begins at the onset of T cell entry and IFN-γ production in the CNS prior to the appearance of virus-neutralizing antibodies. Moreover, antibody-deficient mice are able to control but not clear attenuated RABV from the CNS. We find here that IFN-γ triggers the early production of type I interferons with the expected antiviral effects. We also show that engineering a lethal rabies virus to express IFN-γ directly in the infected tissue reduces rabies virus replication and spread, limiting its pathogenicity in normal and immunocompromised mice. Therefore, vector delivery of IFN-γ to the brain may have the potential to treat individuals who would otherwise succumb to infection with rabies virus.

Vaccine ◽  
2019 ◽  
Vol 37 (33) ◽  
pp. 4663-4672 ◽  
Author(s):  
András Marosi ◽  
Petra Forgách ◽  
Miklós Gyuranecz ◽  
Kinga M. Sulyok ◽  
Tamás Bakonyi

2021 ◽  
Author(s):  
Magen E. Francis ◽  
Una Goncin ◽  
Andrea Kroeker ◽  
Cynthia Swan ◽  
Robyn Ralph ◽  
...  

AbstractCOVID-19 (coronavirus disease 2019) caused SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is a disease affecting several organ systems. A model that captures all clinical symptoms of COVID-19 as well as long-haulers disease is needed. We investigated the host responses associated with infection in several major organ systems including the respiratory tract, the heart, and the kidneys after SARS-CoV-2 infection in Syrian hamsters. We found significant increases in inflammatory cytokines (IL-6, IL-1beta, and TNF) and type II interferons whereas type I interferons were inhibited. Examination of extrapulmonary tissue indicated inflammation in the kidney, liver, and heart which also lacked type I interferon upregulation. Histologically, the heart had evidence of mycarditis and microthrombi while the kidney had tubular inflammation. These results give insight into the multiorgan disease experienced by people with COVID-19 and possibly the prolonged disease in people with post-acute sequelae of SARS-CoV-2 (PASC).


2013 ◽  
Vol 158 (11) ◽  
pp. 2297-2305 ◽  
Author(s):  
Xuefeng Niu ◽  
Lijun Tang ◽  
Tesfai Tseggai ◽  
Yi Guo ◽  
Zhen F. Fu

2014 ◽  
Vol 89 (1) ◽  
pp. 337-349 ◽  
Author(s):  
David J. Morales ◽  
Kristen Monte ◽  
Lulu Sun ◽  
Jessica J. Struckhoff ◽  
Eugene Agapov ◽  
...  

ABSTRACTISG15 is a diubiquitin-like modifier and one of the most rapidly induced genes upon type I interferon stimulation. Hundreds of host proteins and a number of viral proteins have been shown to be ISGylated, and understanding how these modifications affect the interferon response and virus replication has been of considerable interest. ISG15−/−mice exhibit increased susceptibility to viral infection, and in the case of influenza B virus and vaccinia virus, ISG15 conjugation has been shown to restrict virus replicationin vivo. A number of studies have also found that ISG15 is capable of antagonizing replication of some viruses in tissue culture. However, recent findings have demonstrated that ISG15 can protect mice from Chikungunya virus infection without affecting the virus burden. In order to better understand the function of ISG15in vivo, we characterized the pathogenesis of influenza A virus and Sendai virus in ISG15−/−mice. We found that ISG15 protects mice from virus induced lethality by a conjugation-dependent mechanism in both of these models. However, surprisingly, we found that ISG15 had minimal effect on virus replication and did not have an obvious role in the modulation of the acute immune response to infection. Instead, we observed an increase in the number of diseased small airways in mice lacking ISG15. This ability of ISG15 to protect mice in a conjugation-dependent, but nonantiviral, manner from respiratory virus infection represents a previously undescribed role for ISG15 and demonstrates the importance of further characterization of ISG15in vivo.IMPORTANCEIt has previously been demonstrated that ISG15−/−mice are more susceptible to a number of viral infections. Since ISG15 is one of the most strongly induced genes after type I interferon stimulation, analysis of ISG15 function has largely focused on its role as an antiviral molecule during acute infection. Although a number of studies have shown that ISG15 does have a small effect on virus replication in tissue culture, few studies have confirmed this mechanism of protectionin vivo. In these studies we have found that while ISG15−/−mice are more susceptible to influenza A virus and Sendai virus infections, ISGylation does not appear to mediate this protection through the direct inhibition of virus replication or the modulation of the acute immune response. Thus, in addition to showing a novel mode of ISG15 mediated protection from virus infection, this study demonstrates the importance of studying the role of ISG15in vivo.


Virology ◽  
2020 ◽  
Vol 540 ◽  
pp. 17-22 ◽  
Author(s):  
Sarah L. Londrigan ◽  
Linda M. Wakim ◽  
Jeffrey Smith ◽  
Anne J. Haverkate ◽  
Andrew G. Brooks ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1296
Author(s):  
Pengfei Chu ◽  
Libo He ◽  
Rong Huang ◽  
Lanjie Liao ◽  
Yongming Li ◽  
...  

Autophagy is an essential and highly conserved process in mammals, which is critical to maintaining physiological homeostasis, including cell growth, development, repair, and survival. However, the understanding of autophagy in fish virus replication is limited. In this study, we found that grass carp reovirus (GCRV) infection stimulated autophagy in the spleen of grass carp (Ctenopharyngodon idella). Moreover, both Western blot (WB) analysis and fluorescent tracer tests showed that GCRV infection induced the enhancement of autophagy activation in Ctenopharyngodon idella kidney (CIK) cells. Autophagy inducer rapamycin and autophagy inhibitor 3-MA pretreatment can inhibit and promote the proliferation of GCRV, respectively. In addition, grass carp autophagy-related gene 5 (CiATG5)-induced autophagy, as well as rapamycin, showed effects on GCRV replication in CIK cells. Transcriptome analysis revealed that the total number of differentially expressed genes (DEGs) in CiATG5 overexpression groups was less than that of the control during GCRV infection. Enrichment analysis showed that CiATG5 overexpression induced the enhancement of autophagy, lysosome, phagosome, and apoptosis in the early stage of GCRV infection, which led to the clearance of viruses. In the late stage, steroid biosynthesis, DNA replication, terpenoid backbone biosynthesis, and carbon metabolism were upregulated, which contributed to cell survival. Moreover, signaling pathways involved in the immune response and cell death were downregulated in CiATG5 overexpression groups. Further study showed that CiATG5 repressed the expression of inflammatory response genes, including cytokines and type I interferons. Taken together, the results demonstrate that autophagy represses virus replication and attenuates acute inflammatory responses to protect cells.


2008 ◽  
Vol 28 (6) ◽  
pp. 393-404 ◽  
Author(s):  
C. Lallemand ◽  
J.-F. Meritet ◽  
R. Erickson ◽  
S.E. Grossberg ◽  
E. Roullet ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Carol L. Vinton ◽  
Samuel J. Magaziner ◽  
Kimberly A. Dowd ◽  
Shelly J. Robertson ◽  
Emerito Amaro-Carambot ◽  
...  

ABSTRACT Flaviviruses are controlled by adaptive immune responses but are exquisitely sensitive to interferon-stimulated genes (ISGs). How coinfections, particularly simian immunodeficiency viruses (SIVs), that induce robust ISG signatures influence flavivirus clearance and pathogenesis is unclear. Here, we studied how Zika virus (ZIKV) infection is modulated in SIV-infected nonhuman primates. We measured ZIKV replication, cellular ZIKV RNA levels, and immune responses in non-SIV-infected and SIV-infected rhesus macaques (RMs), which we infected with ZIKV. Coinfected animals had a 1- to 2-day delay in peak ZIKV viremia, which was 30% of that in non-SIV-infected animals. However, ZIKV viremia was significantly prolonged in SIV-positive (SIV+) RMs. ISG levels at the time of ZIKV infection were predictive for lower ZIKV viremia in the SIV+ RMs, while prolonged ZIKV viremia was associated with muted and delayed adaptive responses in SIV+ RMs. IMPORTANCE Immunocompromised individuals often become symptomatic with infections which are normally fairly asymptomatic in healthy individuals. The particular mechanisms that underlie susceptibility to coinfections in human immunodeficiency virus (HIV)-infected individuals are multifaceted. ZIKV and other flaviviruses are sensitive to neutralizing antibodies, whose production can be limited in HIV-infected individuals but are also sensitive to type I interferons, which are expressed at high levels in HIV-infected individuals. Data in this study highlight how individual components of the innate and adaptive immune responses which become perturbed in HIV-infected individuals influence ZIKV infection.


2019 ◽  
Vol 14 (1) ◽  
pp. 369-393 ◽  
Author(s):  
Mary K. Crow ◽  
Mikhail Olferiev ◽  
Kyriakos A. Kirou

Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.


Sign in / Sign up

Export Citation Format

Share Document