scholarly journals A Novel Immunogen Selectively Eliciting CD8+ T Cells but Not CD4+ T Cells Targeting Immunodeficiency Virus Antigens

2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Hiroshi Ishii ◽  
Kazutaka Terahara ◽  
Takushi Nomura ◽  
Akiko Takeda ◽  
Midori Okazaki ◽  
...  

ABSTRACT Optimization of immunogen is crucial for induction of effective T-cell responses in the development of a human immunodeficiency virus (HIV) vaccine. Conventional T-cell-based vaccines have been designed to induce virus-specific CD4+ T as well as CD8+ T cells. However, it has been indicated that induction of HIV-specific CD4+ T cells, preferential targets for HIV infection, by vaccination may be detrimental and accelerate viral replication after HIV exposure. In the present study, we present a novel immunogen to selectively induce CD8+ T cells but not CD4+ T cells targeting viral antigens. The immunogen, CaV11, was constructed by tandem connection of overlapping 11-mer peptides spanning simian immunodeficiency virus (SIV) Gag capsid (CA) and Vif. Prime-boost immunization with DNA and Sendai virus (SeV) vectors expressing CaV11 efficiently induced Gag/Vif-specific CD8+ T-cell responses with inefficient Gag/Vif-specific CD4+ T-cell induction in rhesus macaques (n = 6). None of the macaques exhibited the enhancement of acute viral replication after an intravenous high-dose SIV challenge, which was observed in those immunized with DNA and SeV expressing the whole Gag protein in our previous study. Set point viral control postinfection was associated with SeV-specific CD4+ T-cell responses postimmunization, suggesting contribution of SeV-specific helper responses to effective Gag/Vif-specific CD8+ T-cell induction by vaccination. This immunogen design could be a promising method for selective induction of effective anti-HIV CD8+ T-cell responses. IMPORTANCE Induction of effective CD8+ T-cell responses is an important HIV vaccine strategy. Several promising vaccine delivery tools have been developed, and immunogen optimization is now crucial for effective T-cell induction. Conventional immunogens have been designed to induce virus-specific CD4+ T cells as well as CD8+ T cells, but induction of virus-specific CD4+ T cells that are preferential targets for HIV infection could enhance acute HIV proliferation. Here, we designed a novel immunogen to induce HIV-specific CD8+ T cells without HIV-specific CD4+ T-cell induction but with non-HIV antigen-specific CD4+ T-cell help. Our analysis in a macaque AIDS model showed that our immunogen can efficiently elicit effective CD8+ T but not CD4+ T cells targeting viral antigens, resulting in no enhancement of acute viral replication after virus exposure. This immunogen design, also applicable for other currently developed immunogens, could be a promising method for selective induction of effective anti-HIV CD8+ T-cell responses.

2007 ◽  
Vol 82 (4) ◽  
pp. 1723-1738 ◽  
Author(s):  
John T. Loffredo ◽  
Alex T. Bean ◽  
Dominic R. Beal ◽  
Enrique J. León ◽  
Gemma E. May ◽  
...  

ABSTRACT Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8+ T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8+ T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4+ memory T lymphocytes during peak viremia, and all four recovered their CD4+ memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8+ T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8+ T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8+ T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8+ T-cell responses.


2019 ◽  
Vol 11 (519) ◽  
pp. eaav1800 ◽  
Author(s):  
Venkateswarlu Chamcha ◽  
Pradeep B. J. Reddy ◽  
Sunil Kannanganat ◽  
Courtney Wilkins ◽  
Sailaja Gangadhara ◽  
...  

Activated CD4 T cells are a major target of HIV infection. Results from the STEP HIV vaccine trial highlighted a potential role for total activated CD4 T cells in promoting HIV acquisition. However, the influence of vaccine insert-specific CD4 T cell responses on HIV acquisition is not known. Here, using the data obtained from four macaque studies, we show that the DNA prime/modified vaccinia Ankara boost vaccine induced interferon γ (IFNγ+) CD4 T cells [T helper 1 (TH1) cells] rapidly migrate to multiple tissues including colon, cervix, and vaginal mucosa. These mucosal TH1 cells persisted at higher frequencies and expressed higher density of CCR5, a viral coreceptor, compared to cells in blood. After intravaginal or intrarectal simian immunodeficiency virus (SIV)/simian-human immunodeficiency virus (SHIV) challenges, strong vaccine protection was evident only in animals that had lower frequencies of vaccine-specific TH1 cells but not in animals that had higher frequencies of TH1 cells, despite comparable vaccine-induced humoral and CD8 T cell immunity in both groups. An RNA transcriptome signature in blood at 7 days after priming immunization from one study was associated with induction of fewer TH1-type CD4 cells and enhanced protection. These results demonstrate that high and persisting frequencies of HIV vaccine–induced TH1-biased CD4 T cells in the intestinal and genital mucosa can mitigate beneficial effects of protective antibodies and CD8 T cells, highlighting a critical role of priming immunization and vaccine adjuvants in modulating HIV vaccine efficacy.


2008 ◽  
Vol 82 (11) ◽  
pp. 5618-5630 ◽  
Author(s):  
Ronald S. Veazey ◽  
Paula M. Acierno ◽  
Kimberly J. McEvers ◽  
Susanne H. C. Baumeister ◽  
Gabriel J. Foster ◽  
...  

ABSTRACT Previously we have shown that CD8+ T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4+ T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8+ T-cell responses on the magnitude of the CD4+ T-cell depletion, we investigated the effect of CD8+ lymphocyte depletion during primary SIV infection on CD4+ T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8+ lymphocyte-depletion changed the dynamics of CD4+ T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4+ T cells were restored to baseline levels. These CD4+ T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8+ lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5+ CD45RA− CD4+ T cells in CD8+ lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4+ T cells were eliminated more efficiently in CD8+ lymphocyte-depleted animals. Also, CD8+ lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4+ T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8+ T-cell responses are absolutely critical to initiate at least partial control of SIV infection.


2004 ◽  
Vol 78 (2) ◽  
pp. 630-641 ◽  
Author(s):  
R. Draenert ◽  
C. L. Verrill ◽  
Y. Tang ◽  
T. M. Allen ◽  
A. G. Wurcel ◽  
...  

ABSTRACT CD8 T-cell responses are thought to be crucial for control of viremia in human immunodeficiency virus (HIV) infection but ultimately fail to control viremia in most infected persons. Studies in acute infection have demonstrated strong CD8-mediated selection pressure and evolution of mutations conferring escape from recognition, but the ability of CD8 T-cell responses that persist in late-stage infection to recognize viruses present in vivo has not been determined. Therefore, we studied 24 subjects with advanced HIV disease (median viral load = 142,000 copies/ml; median CD4 count = 71/μl) and determined HIV-1-specific CD8 T-cell responses to all expressed viral proteins using overlapping peptides by gamma interferon Elispot assay. Chronic-stage virus was sequenced to evaluate autologous sequences within Gag epitopes, and functional avidity of detected responses was determined. In these subjects, the median number of epitopic regions targeted was 13 (range, 2 to 39) and the median cumulative magnitude of CD8 T-cell responses was 5,760 spot-forming cells/106 peripheral blood mononuclear cells (range, 185 to 24,700). On average six (range, one to 8) proteins were targeted. For 89% of evaluated CD8 T-cell responses, the autologous viral sequence was predicted to be well recognized by these responses and the majority of analyzed optimal epitopes were recognized with medium to high functional avidity by the contemporary CD8 T cells. Withdrawal of antigen by highly active antiretroviral therapy led to a significant decline both in breadth (P = 0.032) and magnitude (P = 0.0098) of these CD8 T-cell responses, providing further evidence that these responses had been driven by recognition of autologous virus. These results indicate that strong, broadly directed, and high-avidity gamma-interferon-positive CD8 T-cells directed at autologous virus persist in late disease stages, and the absence of mutations within viral epitopes indicates a lack of strong selection pressure mediated by these responses. These data imply functional impairment of CD8 T-cell responses in late-stage infection that may not be reflected by gamma interferon-based screening techniques.


2008 ◽  
Vol 82 (19) ◽  
pp. 9629-9638 ◽  
Author(s):  
Monica Vaccari ◽  
Joseph Mattapallil ◽  
Kaimei Song ◽  
Wen-Po Tsai ◽  
Anna Hryniewicz ◽  
...  

ABSTRACT Adaptive CD4+ and CD8+ T-cell responses have been associated with control of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication. Here, we have designed a study with Indian rhesus macaques to more directly assess the role of CD8 SIV-specific responses in control of viral replication. Macaques were immunized with a DNA prime-modified vaccinia virus Ankara (MVA)-SIV boost regimen under normal conditions or under conditions of antibody-induced CD4+ T-cell deficiency. Depletion of CD4+ cells was performed in the immunized macaques at the peak of SIV-specific CD4+ T-cell responses following the DNA prime dose. A group of naïve macaques was also treated with the anti-CD4 depleting antibody as a control, and an additional group of macaques immunized under normal conditions was depleted of CD8+ T cells prior to challenge exposure to SIVmac251. Analysis of the quality and quantity of vaccine-induced CD8+ T cells demonstrated that SIV-specific CD8+ T cells generated under conditions of CD4+ T-cell deficiency expressed low levels of Bcl-2 and interleukin-2 (IL-2), and plasma virus levels increased over time. Depletion of CD8+ T cells prior to challenge exposure abrogated vaccine-induced protection as previously shown. These data support the notion that adaptive CD4+ T cells are critical for the generation of effective CD8+ T-cell responses to SIV that, in turn, contribute to protection from AIDS. Importantly, they also suggest that long-term protection from disease will be afforded only by T-cell vaccines for HIV that provide a balanced induction of CD4+ and CD8+ T-cell responses and protect against early depletion of CD4+ T cells postinfection.


2001 ◽  
Vol 75 (24) ◽  
pp. 11983-11991 ◽  
Author(s):  
Michael R. Betts ◽  
David R. Ambrozak ◽  
Daniel C. Douek ◽  
Sebastian Bonhoeffer ◽  
Jason M. Brenchley ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-specific T-cell responses are thought to play a key role in viral load decline during primary infection and in determining the subsequent viral load set point. The requirements for this effect are unknown, partly because comprehensive analysis of total HIV-specific CD4+ and CD8+T-cell responses to all HIV-encoded epitopes has not been accomplished. To assess these responses, we used cytokine flow cytometry and overlapping peptide pools encompassing all products of the HIV-1 genome to study total HIV-specific T-cell responses in 23 highly active antiretroviral therapy naı̈ve HIV-infected patients. HIV-specific CD8+ T-cell responses were detectable in all patients, ranging between 1.6 and 18.4% of total CD8+ T cells. HIV-specific CD4+ T-cell responses were present in 21 of 23 patients, although the responses were lower (0.2 to 2.94%). Contrary to previous reports, a positive correlation was identified between the plasma viral load and the total HIV-, Env-, and Nef-specific CD8+ T-cell frequency. No correlation was found either between viral load and total or Gag-specific CD4+ T-cell response or between the frequency of HIV-specific CD4+ and CD8+ T cells. These results suggest that overall frequencies of HIV-specific T cells are not the sole determinant of immune-mediated protection in HIV-infection.


2009 ◽  
Vol 83 (15) ◽  
pp. 7649-7658 ◽  
Author(s):  
J. Judy Chang ◽  
Sunee Sirivichayakul ◽  
Anchalee Avihingsanon ◽  
Alex J. V. Thompson ◽  
Peter Revill ◽  
...  

ABSTRACT Hepatits B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.


2008 ◽  
Vol 83 (3) ◽  
pp. 1501-1510 ◽  
Author(s):  
Rosemarie D. Mason ◽  
Sheilajen Alcantara ◽  
Viv Peut ◽  
Liyen Loh ◽  
Jeffrey D. Lifson ◽  
...  

ABSTRACT Practical immunotherapies for human immunodeficiency virus infection are needed. We evaluated inactivated simian immunodeficiency virus (SIV) pulsed onto fresh peripheral blood mononuclear cells in 12 pigtail macaques with chronic SIVmac251 infection for T-cell immunogenicity in a randomized cross-over design study. The immunotherapy was safe and convincingly induced high levels of SIV-specific CD4+ T-cell responses (mean, 5.9% ± 1.3% of all CD4+ T cells) and to a lesser extent SIV-specific CD8+ T-cell responses (mean, 0.7% ± 0.4%). Responses were primarily directed toward Gag and less frequently toward Env but not Pol or regulatory/accessory SIV proteins. T-cell responses against Gag were generally broad and polyfunctional, with a mean of 2.7 CD4+ T-cell epitopes mapped per animal and more than half of the SIV Gag-specific CD4+ T cells expressing three or more effector molecules. The immunogenicity was comparable to that found in previous studies of peptide-pulsed blood cells. Despite the high-level immunogenicity, no reduction in viral load was observed in the chronically viremic macaques. This contrasts with our studies of immunization with peptide-pulsed blood cells during early SIV infection in macaques. Future studies of inactivated virus-pulsed blood cell immunotherapy during early infection of patients receiving antiretroviral therapy are warranted.


2003 ◽  
Vol 77 (14) ◽  
pp. 7796-7803 ◽  
Author(s):  
Tracey J. Harvey ◽  
Itaru Anraku ◽  
Richard Linedale ◽  
David Harrich ◽  
Jason Mackenzie ◽  
...  

ABSTRACT We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8+ T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8+ T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of ≥1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8+ T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8+ T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8+ T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.


Sign in / Sign up

Export Citation Format

Share Document