scholarly journals The autophagy-initiating protein kinase ULK1 phosphorylates human cytomegalovirus tegument protein pp28 and regulates efficient virus release

2020 ◽  
pp. JVI.02346-20
Author(s):  
Patrick König ◽  
Adriana Svrlanska ◽  
Clarissa Read ◽  
Sabine Feichtinger ◽  
Thomas Stamminger

Autophagy is a catabolic process contributing to intrinsic cellular defense by degrading viral particles or proteins, however, several viruses hijack this pathway for their own benefit. The role of autophagy during human cytomegalovirus (HCMV) replication has not been definitely clarified yet. Utilizing siRNA-based screening, we observed that depletion of many autophagy-related proteins resulted in reduced virus release suggesting a requirement of autophagy-related factors for efficient HCMV replication. Additionally, we could show that the autophagy-initiating serine/threonine-protein kinase ULK1 as well as other constituents of the ULK1 complex were upregulated at early times of infection and stayed upregulated throughout the replication cycle. We demonstrate that an indirect interference with ULK1 through inhibition of the upstream regulator AMPK impaired virus release. Furthermore, this result was verified by direct abrogation of ULK1 kinase activity utilizing the ULK1-specific kinase inhibitors SBI-0206965 and ULK-101. Analysis of viral protein expression in the presence of ULK-101 revealed a connection between the cellular kinase ULK1 and the viral tegument protein pp28 (pUL99) and we identified pp28 as a novel viral substrate of ULK1 by in vitro kinase assays. In the absence of ULK1 kinase activity, large pp28- and pp65-positive structures could be detected in the cytoplasm at late time points of infection. Transmission electron microscopy demonstrated that these structures represent large perinuclear protein accumulations presumably representing aggresomes. Our results indicate that HCMV manipulates ULK1 and further components of the autophagic machinery to ensure efficient release of viral particles.IMPORTANCE The catabolic program of autophagy represents a powerful immune defense against viruses that is, however, counteracted by antagonizing viral factors. Understanding the exact interplay between autophagy and HCMV infection is of major importance since autophagy-related proteins emerged as promising targets for pharmacologic intervention. Our study provides evidence for a proviral role of several autophagy-related proteins suggesting that HCMV has developed strategies to usurp components of the autophagic machinery for its own benefit. In particular, we observed a strong upregulation of the autophagy-initiating protein kinase ULK1 and further components of the ULK1 complex during HCMV replication. In addition, both siRNA-mediated depletion of ULK1 and interference with ULK1 protein kinase activity by two chemically different inhibitors resulted in impaired viral particle release. Thus, we propose that ULK1 kinase activity is required for efficient HCMV replication and thus represents a promising novel target for future antiviral drug development.

2004 ◽  
Vol 48 (11) ◽  
pp. 4154-4162 ◽  
Author(s):  
Thomas Herget ◽  
Martina Freitag ◽  
Monika Morbitzer ◽  
Regina Kupfer ◽  
Thomas Stamminger ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) is a major human pathogen frequently associated with life-threatening disease in immunosuppressed patients and newborns. The HCMV UL97-encoded protein kinase (pUL97) represents an important determinant of viral replication. Recent studies demonstrated that pUL97-specific kinase inhibitors are powerful tools for the control of HCMV replication. We present evidence that three related quinazoline compounds are potent inhibitors of the pUL97 kinase activity and block in vitro substrate phosphorylation, with 50% inhibitory concentrations (IC50s) between 30 and 170 nM. Replication of HCMV in primary human fibroblasts was suppressed with a high efficiency. The IC50s of these three quinazoline compounds (2.4 ± 0.4, 3.4 ± 0.6, and 3.9 ± 1.1 μM, respectively) were in the range of the IC50 of ganciclovir (1.2 ± 0.2 μM), as determined by the HCMV green fluorescent protein-based antiviral assay. Importantly, the quinazolines were demonstrated to have strong inhibitory effects against clinical HCMV isolates, including ganciclovir- and cidofovir-resistant virus variants. Moreover, in contrast to ganciclovir, the formation of resistance to the quinazolines was not observed. The mechanisms of action of these compounds were confirmed by kinetic analyses with infected cells. Quinazolines specifically inhibited viral early-late protein synthesis but had no effects at other stages of the replication cycle, such as viral entry, consistent with a blockage of the pUL97 function. In contrast to epithelial growth factor receptor inhibitors, quinazolines affected HCMV replication even when they were added hours after virus adsorption. Thus, our findings indicate that quinazolines are highly efficient inhibitors of HCMV replication in vitro by targeting pUL97 protein kinase activity.


2000 ◽  
Vol 20 (16) ◽  
pp. 5858-5864 ◽  
Author(s):  
Gregory J. Reynard ◽  
William Reynolds ◽  
Rati Verma ◽  
Raymond J. Deshaies

ABSTRACT p13suc1 (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G1 cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G1cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G1 cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G1 cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G1 phase in budding yeast.


1992 ◽  
Vol 20 (3) ◽  
pp. 607-611 ◽  
Author(s):  
Alastair Aitken ◽  
Bob Amess ◽  
Steve Howell ◽  
David Jones ◽  
Harry Martin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document