osteoblast cell line
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 44)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Khushpreet Kaur ◽  
Sumedha Sharma ◽  
Sudhanshu Abhishek ◽  
Prabhdeep Kaur ◽  
Uttam C. Saini ◽  
...  

Bone tuberculosis is widely characterized by irreversible bone destruction caused by Mycobacterium tuberculosis . Mycobacterium has the ability to adapt to various environmental stresses by altering its transcriptome in order to establish infection in the host. Thus, it is of critical importance to understand the transcriptional profile of M. tuberculosis during infection in the bone environment compared to axenic cultures of exponentially growing M.tb. In the current study, we characterized the in vivo transcriptome of M. tuberculosis within abscesses or necrotic specimens obtained from patients with bone TB using whole genome microarrays in order to gain insight into the M. tuberculosis adaptive response within this host microenvironment. A total of 914 mycobacterial genes were found to be significantly over-expressed and 1688 were repressed (fold change>2; p-value ≤ 0.05) in human bone TB specimens. Overall, the mycobacteria displayed a hypometabolic state with significant (p ≤ 0.05) downregulation of major pathways involved in translational machinery, cellular and protein metabolism and response to hypoxia. However, significant enrichment (p ≤ 0.05) of amino-sugar metabolic processes, membrane glycolipid biosynthesis, amino acid biosynthesis (serine, glycine, arginine and cysteine) and accumulation of mycolyl-arabinogalactan-peptidoglycan complex suggests possible mycobacterial survival strategies within the bone lesions by strengthening its cell wall and cellular integrity. Data were also screened for M.tb virulence proteins using Virulent-Pred and VICM-Pred tools, which revealed five genes (Rv1046c, Rv1230c, DppD, PE_PGRS26 and PE_PGRS43) with a possible role in the pathogenesis of bone TB. Next, an osteoblast cell line model for bone TB was developed allowing for significant intracellular multiplication of M.tb. Interestingly, three virulence genes (Rv1046c, DppD and PE_PGRS26) identified from human bone TB microarray data were also found to be overexpressed by intracellular M. tuberculosis in osteoblast cell lines. Overall, these data demonstrate that M. tuberculosis alters its transcriptome as an adaptive strategy to survive in the host and establish infection in bone. Additionally, the in vitro osteoblast model we describe may facilitate our understanding of the pathogenesis of bone TB.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 451
Author(s):  
Hermizi Hapidin ◽  
Nor Munira Hashim ◽  
Mohamad Zahid Kasiram ◽  
Hasmah Abdullah

Background: This study investigates the effect of tannic acid (TA) combined with pamidronate (PAM) on a human osteoblast cell line. Methods: EC50 for TA, PAM, and different combination ratios of TA and PAM (25:75, 50:50, 75:25) were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The combination index value was utilized to analyze the degree of drug interaction, while trypan blue assay was applied to analyze the cells proliferation effect. The mineralization and detection of bone BSP and Osx genes were determined via histochemical staining and PCR test, respectively. Results: The EC50 of osteoblasts treated with TA and a 75:25 ratio of TA and PAM were more potent with lower EC50 at 0.56 µg/mL and 0.48 µg/mL, respectively. The combination of TA and PAM (75:25) was shown to have synergistic interaction. On Day 7, both TA and PAM groups showed significantly increased proliferation compared with control and combination groups. On Day 7, both the TA and combination-treated groups demonstrated a higher production of calcium deposits than the control and PAM-treated groups. Moreover, on Day 7, the combination-treated group showed a significantly higher expression of BSP and Osx genes than both the TA and PAM groups. Conclusion: Combination treatment of TA and PAM at 75:25 ameliorated the highest enhancement of osteoblast proliferation and mineralization as well as caused a high expression of BSP and Osx genes.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianghao Gong ◽  
Shangjun Fu ◽  
Zhenghao Zhou

Objective. To explore the effects of silicone gel nanoparticles modified with octacalcium phosphate on the surface (silica/OCP) polymer drugs on the proliferation of osteoblasts and autophagy. Method. Silica/OCP was prepared in vitro, and the quality of the sample preparation was tested through characterization experiments. The osteoblast cell line (hFOB1.19) was treated with silica/OCP, autophagy inhibitor (3-methyladenine (3-MA)), and silica/OCP+3-MA, respectively. The proliferation of hFOB1.19 cells was detected through the methylthiazolyldiphenyl-tetrazolium bromide (MTT) kit. Flow cytometry was used to detect the cell apoptosis. The change in protein beclin1 and P62 expression in hFOB1.19 cells was observed in Western blot. An ROS detection kit was used to detect the content of reactive oxygen species in hFOB1.19 cells. Results. Silica/OCP was a sphere with a particle size of 50 nm to 130 nm and had an OCP phase in electron projection microscopy and X-ray diffraction techniques. The results indicated that OCP successfully modified silica and the material was successfully prepared. An MTT kit and flow cytometry test showed that the cell viability of the cells treated with silica/OCP increased significantly ( P < 0.05 ), and the intracellular apoptosis phenomenon was significantly decreased ( P < 0.05 ) compared to the control group. Moreover, the inhibition of cell viability and promotion of apoptosis caused by the autophagy inhibitor 3-MA can be rescued. Western blotting demonstrated that the protein level of beclin1 in osteoblasts reached the highest after six hours of treatment with silica/OCP, and the protein level of p62, the substrate protein of autophagy, reached the lowest. At the same time, treatment of cells with the autophagy inhibitor 3-MA and silica/OCP+3-MA found that the protein levels of beclin1 and p62 in the silica/OCP+3-MA group were adjusted back compared to the 3-MA group. After adding the autophagy inhibitor, the reactive oxygen content in the cell was significantly increased ( P < 0.05 ) in the silica/OCP group. In the presence of intracellular reactive oxygen inhibitors catalase and silica/OCP, the cell viability of osteoblasts was significantly lower than that of the silica/OCP group but significantly higher than that of the silica/OCP+3-MA group. The apoptosis level of the silica/OCP+catalase group was also significantly lower than that of the silica/OCP+3-MA group ( P < 0.05 ) but was significantly higher than that of the silica/OCP group ( P < 0.05 ). Conclusion. Silica/OCP nanoparticles can upregulate the level of autophagy in osteoblasts and promote the proliferation of osteoblasts.


Author(s):  
Krzysztof Łukowicz ◽  
Barbara Zagrajczuk ◽  
Jarosław Wieczorek ◽  
Katarzyna Millan-Ciesielska ◽  
Izabela Polkowska ◽  
...  

AbstractIn this work we dissected the osteoinductive properties of selected, PLGA-based scaffolds enriched with gel-derived bioactive glasses (SBGs) of either binary SiO2-CaO or ternary SiO2-CaO-P2O5 system, differing in CaO/SiO2 ratio (i.e. high -or low-calcium SBGs). To assess the inherent ability of the scaffolds to induce osteogenesis of human bone marrow stromal cells (BMSC), the study was designed to avoid any osteogenic stimuli beyond the putative osteogenic SBG component of the studied scaffolds. The bioactivity and porosity of scaffolds were confirmed by SBF test and porosimetry. Condition media (CM) from BMSC-loaded scaffolds exhibited increased Ca and decreased P content corresponding to SBGs CaO/SiO2 ratio, whereas Si content was relatively stable and overall lower in CM from scaffolds containing binary SBGs. CM from cell-loaded scaffolds containing high-calcium, binary SBGs promoted migration of BMSC and BMP-response in reporter osteoblast cell line. BMSC culture on these scaffolds or the ones containing ternary, low-calcium SBGs resulted in the activation of BMP-related signaling and expression of several osteogenic markers. Ectopic bone formation was induced by scaffolds containing binary SBGs, but high-calcium ones produced significantly more osteoid. Scaffolds containing ternary SBGs negatively influenced the expression of osteogenic transcription factors and Cx43, involved in cell-cell interactions. High-calcium scaffolds stimulated overall higher Cx43 expression. We believe the initial cell-cell communication may be crucial to induce and maintain osteogenesis and high BMP signaling on the studied scaffolds. The presented scaffolds’ biological properties may also constitute new helpful markers to predict osteoinductive potential of other bioactive implant materials. Graphical Abstract


2021 ◽  
Vol 22 (22) ◽  
pp. 12259
Author(s):  
Alireza Valanezhad ◽  
Tetsurou Odatsu ◽  
Shigeaki Abe ◽  
Ikuya Watanabe

Recently, ferroptosis has gained scientists’ attention as an iron-related regulated necrosis. However, not many reports have investigated the effect of ferroptosis on bone. Therefore, with the present study, we assessed the effect of ferroptosis inhibition using ferrostatin-1 on the MC3T3-E1 pre-osteoblast cell. Cell images, cell viability, alkaline phosphatase activity test, alizarin red staining, and RUNX2 gene expression using real-time PCR were applied to investigate the effects of ferrostatin and erastin on MC3T3-E1 osteoblast cells. Erastin was used as a well-known ferroptosis inducer reagent. Erastin with different concentrations ranging from 0 to 50 µmol/L was used for inducing cell death. The 25 µmol/L erastin led to controllable partial cell death on osteoblast cells. Ferrostatin-1 with 0 to 40 µmol/L was used for cell doping and cell death inhibition effect. Ferrostatin-1 also displayed a recovery effect on the samples, which had already received the partially artificial cell death by erastin. Cell differentiation, alizarin red staining, and RUNX2 gene expression confirmed the promotion of the bone formation ability effect of ferrostatin-1 on osteoblast cells. The objective of this study was to assess ferrostatin-1’s effect on the MC3T3-E1 osteoblast cell line based on its ferroptosis inhibitory property.


2021 ◽  
Vol 7 (5) ◽  
pp. 4005-4012
Author(s):  
Peng Shi ◽  
Yujie Sun ◽  
Jing Huang ◽  
Lugang Zhou

Objective: To explore the role and potential mechanism of miR-152 in osteoporosis. Methods: Fifty-four osteoporotic patients and 54 healthy subjects were recruited from August 2017 to January 2019. Serum samples of the two groups were obtained, and the miR-152 expression in serum was detected and compared. The human osteoblast cell line hFOB1.19 was obtained and miR-152 in cells was increased. The biological behavior changes such as cell proliferation, apoptosis and differentiation were observed by MTT, flow cytometry and detection of osteoblast differentiation markers (ALP, OCN). Results: miR-152 was elevated in osteoporosis patients, and AUC value of serum miR-152 in diagnosing osteoporosis was 0.939. After miR-152 in osteoblasts was elevated, cell proliferation was inhibited, cell apoptosis rate increased, and ALP and OCN content in cells reduced, while increasing cell RUNX2 simultaneously was totally different. Dual luciferase report showed that RUNX2 could be targeted and regulated by miR-152. Conclusion: miR-152 is elevated in serum of osteoporosis patients and can be used as a biological indicator for diagnosing osteoporosis. In addition, miR-152 can inhibit osteoblast proliferation, differentiation and induce apoptosis through negative regulation of RUNX2.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1356
Author(s):  
Rebecca Alexandra Puiu ◽  
Paul Cătălin Balaure ◽  
Ema Constantinescu ◽  
Alexandru Mihai Grumezescu ◽  
Ecaterina Andronescu ◽  
...  

Globally, cancer is the second most common cause of death, and Europe accounts for almost 25% of the global cancer burden, although its people make up only 10% of the world’s population. Conventional systemically administered anti-cancer drugs come with important drawbacks such as inefficiency due to poor bioavailability and improper biodistribution, severe side effects associated with low therapeutic indices, and the development of multidrug resistance. Therefore, smart nano-engineered targeted drug-delivery systems with tailored pharmacokinetics and biodistribution which can selectively deliver anti-cancer agents directly to the tumor site are the solution to most difficulties encountered with conventional therapeutic tools. Here, we report on the synthesis, physicochemical characterization, and in vitro evaluation of biocompatibility and anti-tumor activity of novel magnetically targetable SPIONs based on magnetite (Fe3O4) nanoparticles’ surface modified with β-cyclodextrin (CD) and paclitaxel (PTX)–guest–host inclusion complexes (Fe3O4@β-CD/PTX). Both pristine Fe3O4@β-CD nanopowders and PTX-loaded thin films fabricated by MAPLE technique were investigated. Pristine Fe3O4@β-CD and Fe3O4@β-CD/PTX thin films were physicochemically characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The biocompatibility of bare magnetic nanocomposite thin films was evaluated by MTT cell viability assay on a normal 3T3 osteoblast cell line culture and by measuring the level of NO in the culture medium. No significant modifications, neither in cell viability nor in NO level, could be observed, thereby demonstrating the excellent biocompatibility of the SPIONs thin films. Inverted phase-contrast microscopy showed no evident adverse effect on the morphology of normal osteoblasts. On the other hand, Fe3O4@β-CD/PTX films decreased the cell viability of the MG-63 osteosarcoma cell line by 85%, demonstrating excellent anti-tumor activity. The obtained results recommend these magnetic hybrid films as promising candidates for future delivery, and hyperthermia applications in cancer treatment.


2021 ◽  
Vol 11 (17) ◽  
pp. 7927
Author(s):  
Julia Eichhorn ◽  
Cindy Elschner ◽  
Martin Groß ◽  
Rudi Reichenbächer ◽  
Aarón X. Herrera Martín ◽  
...  

Bioactive glasses have been used for many years in the human body as bone substitute. Since bioactive glasses are not readily available in the form of endless thin fibres with diameters below 20 µm, their use is limited to mainly non-load-bearing applications in the form of particles or granules. In this study, the spinnability of four bioactive silicate glasses was evaluated in terms of crystallisation behaviour, characteristic processing temperatures and viscosity determined by thermal analysis. The glass melts were drawn into fibres and their mechanical strength was measured by single fibre tensile tests before and after the surface treatment with different silanes. The degradation of the bioactive glasses was observed in simulated body fluid and pure water by recording the changes of the pH value and the ion concentration by inductively coupled plasma optical emission spectrometry; further, the glass degradation process was monitored by scanning electron microscopy. Additionally, first in vitro experiments using murine pre-osteoblast cell line MC3T3E1 were carried out in order to evaluate the interaction with the glass fibre surface. The results achieved in this work show up the potential of the manufacturing of endless bioactive glass fibres with appropriate mechanical strength to be applied as reinforcing fibres in new innovative medical implants.


2021 ◽  
Vol 22 (16) ◽  
pp. 9084
Author(s):  
Seokhwan Yun ◽  
Dami Choi ◽  
Dong-Jin Choi ◽  
Songwan Jin ◽  
Won-Soo Yun ◽  
...  

Bone formation and growth are crucial for treating bone fractures. Improving bone-reconstruction methods using autologous bone and synthetic implants can reduce the recovery time. Here, we investigated three treatments using two different materials, a bone-derived decellularized extracellular matrix (bdECM) and β-tricalcium phosphate (β-TCP), individually and in combination, as osteogenic promoter between bone and 3D-printed polycaprolactone scaffold (6-mm diameter) in rat calvarial defects (8-mm critical diameter). The materials were tested with a human pre-osteoblast cell line (MG63) to determine the effects of the osteogenic promoter on bone formation in vitro. A polycaprolactone (PCL) scaffold with a porous structure was placed at the center of the in vivo rat calvarial defects. The gap between the defective bone and PCL scaffold was filled with each material. Animals were sacrificed four weeks post-implantation, and skull samples were preserved for analysis. The preserved samples were scanned by micro-computed tomography and analyzed histologically to examine the clinical benefits of the materials. The bdECM–β-TCP mixture showed faster bone formation and a lower inflammatory response in the rats. Therefore, our results imply that a bdECM–β-TCP mixture is an ideal osteogenic promoter for treating fractures.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1132
Author(s):  
Emel Rothzerg ◽  
Xuan Dung Ho ◽  
Jiake Xu ◽  
David Wood ◽  
Aare Märtson ◽  
...  

The human genome encodes thousands of natural antisense long noncoding RNAs (lncRNAs); they play the essential role in regulation of gene expression at multiple levels, including replication, transcription and translation. Dysregulation of antisense lncRNAs plays indispensable roles in numerous biological progress, such as tumour progression, metastasis and resistance to therapeutic agents. To date, there have been several studies analysing antisense lncRNAs expression profiles in cancer, but not enough to highlight the complexity of the disease. In this study, we investigated the expression patterns of antisense lncRNAs from osteosarcoma and healthy bone samples (24 tumour-16 bone samples) using RNA sequencing. We identified 15 antisense lncRNAs (RUSC1-AS1, TBX2-AS1, PTOV1-AS1, UBE2D3-AS1, ERCC8-AS1, ZMIZ1-AS1, RNF144A-AS1, RDH10-AS1, TRG-AS1, GSN-AS1, HMGA2-AS1, ZNF528-AS1, OTUD6B-AS1, COX10-AS1 and SLC16A1-AS1) that were upregulated in tumour samples compared to bone sample controls. Further, we performed real-time polymerase chain reaction (RT-qPCR) to validate the expressions of the antisense lncRNAs in 8 different osteosarcoma cell lines (SaOS-2, G-292, HOS, U2-OS, 143B, SJSA-1, MG-63, and MNNG/HOS) compared to hFOB (human osteoblast cell line). These differentially expressed IncRNAs can be considered biomarkers and potential therapeutic targets for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document