scholarly journals Induction of APOBEC3 In Vivo Causes Increased Restriction of Retrovirus Infection

2009 ◽  
Vol 83 (8) ◽  
pp. 3486-3495 ◽  
Author(s):  
Chioma M. Okeoma ◽  
Audrey Low ◽  
Will Bailis ◽  
Hung Y. Fan ◽  
B. Matija Peterlin ◽  
...  

ABSTRACTAPOBEC3 proteins are important cellular factors that restrict infection by a number of viruses, including human immunodeficiency virus type 1 (HIV-1). Previously, we found that the mouse APOBEC3 (mA3) restricts infection by mouse mammary tumor virus (MMTV) in its natural host. Dendritic cells (DCs) are the first in vivo targets of MMTV infection. In this study, we demonstrate that mA3 expressed in target cells restricts MMTV infection in DCs ex vivo and in vivo. By comparing infection of DCs from mA3+/+and mA3−/−mice with one-hit viruses, we show that mA3 expression in target cells blocked MMTV infection at a postentry step and acted together with virion-packaged mA3 to inhibit infection. Similar results were obtained upon infection of mouse DCs with HIV-1 cores pseudotyped with vesicular stomatitis virus G protein. In addition, treatment of cells or mice with lipopolysaccharide (LPS) caused increased levels of mA3 expression and rendered them resistant to MMTV infection. Alpha interferon treatment had a similar effect. This LPS-induced resistance to infection was seen only in mA3+/+mice and not in mA3−/−mice, arguing that mA3 is the major anti-MMTV restriction factor that is induced upon DC maturation. Thus, increasing the levels of this intrinsic antiretroviral factor in vivo can lead to increased levels of restriction because of higher levels of both cell-intrinsic as well as virion-packaged APOBEC3.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Gurvani B. Singh ◽  
Hyewon Byun ◽  
Almas F. Ali ◽  
Frank Medina ◽  
Dennis Wylie ◽  
...  

ABSTRACT Complex human-pathogenic retroviruses cause high morbidity and mortality worldwide, but resist antiviral drugs and vaccine development due to evasion of the immune response. A complex retrovirus, mouse mammary tumor virus (MMTV), requires replication in B and T lymphocytes for mammary gland transmission and is antagonized by the innate immune restriction factor murine Apobec3 (mA3). To determine whether the regulatory/accessory protein Rem affects innate responses to MMTV, a splice-donor mutant (MMTV-SD) lacking Rem expression was injected into BALB/c mice. Mammary tumors induced by MMTV-SD had a lower proviral load, lower incidence, and longer latency than mammary tumors induced by wild-type MMTV (MMTV-WT). MMTV-SD proviruses had many G-to-A mutations on the proviral plus strand, but also C-to-T transitions within WRC motifs. Similarly, a lymphomagenic MMTV variant lacking Rem expression showed decreased proviral loads and increased WRC motif mutations relative to those in wild-type-virus-induced tumors, consistent with activation-induced cytidine deaminase (AID) mutagenesis in lymphoid cells. These mutations are typical of the Apobec family member AID, a B-cell-specific mutagenic protein involved in antibody variable region hypermutation. In contrast, mutations in WRC motifs and proviral loads were similar in MMTV-WT and MMTV-SD proviruses from tumors in AID-insufficient mice. AID was not packaged in MMTV virions. Rem coexpression in transfection experiments led to AID proteasomal degradation. Our data suggest that rem specifies a human-pathogenic immunodeficiency virus type 1 (HIV-1) Vif-like protein that inhibits AID and antagonizes innate immunity during MMTV replication in lymphocytes. IMPORTANCE Complex retroviruses, such as human-pathogenic immunodeficiency virus type 1 (HIV-1), cause many human deaths. These retroviruses produce lifelong infections through viral proteins that interfere with host immunity. The complex retrovirus mouse mammary tumor virus (MMTV) allows for studies of host-pathogen interactions not possible in humans. A mutation preventing expression of the MMTV Rem protein in two different MMTV strains decreased proviral loads in tumors and increased viral genome mutations typical of an evolutionarily ancient enzyme, AID. Although the presence of AID generally improves antibody-based immunity, it may contribute to human cancer progression. We observed that coexpression of MMTV Rem and AID led to AID destruction. Our results suggest that Rem is the first known protein inhibitor of AID and that further experiments could lead to new disease treatments.


1998 ◽  
Vol 72 (6) ◽  
pp. 5121-5127 ◽  
Author(s):  
Prasad S. Koka ◽  
John K. Fraser ◽  
Yvonne Bryson ◽  
Gregory C. Bristol ◽  
Grace M. Aldrovandi ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected individuals often exhibit multiple hematopoietic abnormalities reaching far beyond loss of CD4+ lymphocytes. We used the SCID-hu (Thy/Liv) mouse (severe combined immunodeficient mouse transplanted with human fetal thymus and liver tissues), which provides an in vivo system whereby human pluripotent hematopoietic progenitor cells can be maintained and undergo T-lymphoid differentiation and wherein HIV-1 infection causes severe depletion of CD4-bearing human thymocytes. Herein we show that HIV-1 infection rapidly and severely decreases the ex vivo recovery of human progenitor cells capable of differentiation into both erythroid and myeloid lineages. However, the total CD34+ cell population is not depleted. Combination antiretroviral therapy administered well after loss of multilineage progenitor activity reverses this inhibitory effect, establishing a causal role of viral replication. Taken together, our results suggest that pluripotent stem cells are not killed by HIV-1; rather, a later stage important in both myeloid and erythroid differentiation is affected. In addition, a primary virus isolated from a patient exhibiting multiple hematopoietic abnormalities preferentially depleted myeloid and erythroid colony-forming activity rather than CD4-bearing thymocytes in this system. Thus, HIV-1 infection perturbs multiple hematopoietic lineages in vivo, which may explain the many hematopoietic defects found in infected patients.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1567-1572 ◽  
Author(s):  
ST Fan ◽  
K Hsia ◽  
TS Edgington

Abstract Cells of monocytic lineage (Mo) persistently infected with human immunodeficiency virus (HIV) have been suspected to be a major reservoir for in vivo transmission of virus to susceptible target cells. Cellular events and mechanisms that upregulate viral gene expression in such cells are important issues. Because the traffic of such cells is central to biodistribution of HIV, we have explored the impact of interaction of endothelium with HIV-1-infected U1 promonocytic cells. Coculturing of U1 with human umbilical endothelial cells (HUVEC) for 24 to 72 hours in the absence of stimulation induced HIV-1 p24 biosynthesis significantly. Antibody-blocking experiments indicated that CD11/CD18 integrins play a role in upregulation of HIV expression elicited by interaction with HUVEC. Engagement of CD11b/CD18 by adherence of U1 to surfaces coated with either the cognate ligand fibrinogen or monoclonal antibody specific for CD11b/CD18 also enhanced p24 biosynthesis. Furthermore, endothelial cells were found to constitutively synthesize and secrete soluble factors that enhanced HIV- 1 synthesis. The enhancing factors, of estimated size 10 to 45 kD, were induced in HUVEC to high levels by monokines or by lipopolysaccharide, resulting in markedly enhanced HIV-1 expression by U1. These endothelial cell-derived HIV-1-enhancing factors consist of, among others, interleukin-6 (IL-6), IL-1 beta, and granulocyte-macrophage CSF (GM-CSF). Our results suggest that activation of HIV biosynthesis in infected Mo via interaction with endothelium may impact significantly on the tissue distribution and pathogenesis of HIV infections.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Rogers A. Ñahui Palomino ◽  
Christophe Vanpouille ◽  
Luca Laghi ◽  
Carola Parolin ◽  
Kamran Melikov ◽  
...  

AbstractThe vaginal microbiota, dominated by Lactobacillus spp., plays a key role in preventing HIV-1 transmission. Here, we investigate whether the anti-HIV effect of lactobacilli is mediated by extracellular vesicles (EVs) released by these bacteria. Human cervico-vaginal and tonsillar tissues ex vivo, and cell lines were infected with HIV-1 and treated with EVs released by lactobacilli isolated from vaginas of healthy women. EVs released by L. crispatus BC3 and L. gasseri BC12 protect tissues ex vivo and isolated cells from HIV-1 infection. This protection is associated with a decrease of viral attachment to target cells and viral entry due to diminished exposure of Env that mediates virus-cell interactions. Inhibition of HIV-1 infection is associated with the presence in EVs of several proteins and metabolites. Our findings demonstrate that the protective effect of Lactobacillus against HIV-1 is, in part, mediated by EVs released by these symbiotic bacteria. If confirmed in vivo, this finding may lead to new strategies to prevent male-to-female sexual HIV-1 transmission.


2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


2006 ◽  
Vol 81 (2) ◽  
pp. 639-649 ◽  
Author(s):  
Yung-Wei Pan ◽  
Jarrad M. Scarlett ◽  
Tammy T. Luoh ◽  
Peter Kurre

ABSTRACT Human immunodeficiency virus type 1-derived lentivirus vectors bearing the vesicular stomatitis virus G (VSV-G) envelope glycoprotein demonstrate a wide host range and can stably transduce quiescent hematopoietic stem cells. In light of concerns about biosafety and potential germ line transmission, they have been used predominantly for ex vivo strategies, thought to ensure the removal of excess surface-bound particles and prevent in vivo dissemination. Studies presented here instead reveal prolonged particle adherence after ex vivo exposure, despite serial wash procedures, with subsequent transduction of secondary target cells in direct and transwell cocultures. We explored the critical parameters affecting particle retention and transfer and show that attachment to the cell surface selectively protects virus particles from serum complement-mediated inactivation. Moreover, studies with nonmyeloablated murine recipients show that transplantation of vector-exposed, washed hematopoietic cells results in systemic dissemination of functional VSV-G/lentivector particles. We demonstrate genetic marking by inadvertent transfer of vector particles and prolonged expression of transgene product in recipient tissues. Our findings have implications for biosafety, vector design, and cell biology research.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 77
Author(s):  
Yajing Fu ◽  
Sijia He ◽  
Abdul Waheed ◽  
Deemah Dabbagh ◽  
Zheng Zhou ◽  
...  

P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is primarily expressed on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits human immunodeficiency virus type 1 (HIV-1) replication, the mechanism of PSGL-1-mediated anti-HIV activity remains to be elucidated. Here, we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein, vesicular stomatitis virus G glycoprotein, or lacking a viral glycoprotein, is impaired by PSGL-1. Mapping studies show that the extracellular, N-terminal domain of PSGL-1 is necessary for its anti-HIV-1 activity, and the PSGL-1 cytoplasmic tail contributes to its inhibition. In addition, we demonstrate that the PSGL-1-related monomeric E-selectin-binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or the expression of either Vpu or Nef, downregulates PSGL-1 from the cell surface; the expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1-mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a novel mechanism of action.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Uddhav Timilsina ◽  
Supawadee Umthong ◽  
Brian Lynch ◽  
Aimee Stablewski ◽  
Spyridon Stavrou

ABSTRACT The serine incorporator (SERINC) proteins are multipass transmembrane proteins that affect sphingolipid and phosphatidylserine synthesis. Human SERINC5 and SERINC3 were recently shown to possess antiretroviral activity for a number of retroviruses, including human immunodeficiency virus (HIV), murine leukemia virus (MLV), and equine infectious anemia virus (EIAV). In the case of MLV, the glycosylated Gag (glyco-Gag) protein was shown to counteract SERINC5-mediated restriction in in vitro experiments and the viral envelope was found to determine virion sensitivity or resistance to SERINC5. However, nothing is known about the in vivo function of SERINC5. Antiretroviral function of a host factor in vitro is not always associated with antiretroviral function in vivo. Using SERINC5−/− mice that we had generated, we showed that mouse SERINC5 (mSERINC5) restriction of MLV infection in vivo is influenced not only by glyco-Gag but also by the retroviral envelope. Finally, we also examined the in vivo function of the other SERINC gene with known antiretroviral functions, SERINC3. By using SERINC3−/− mice, we found that the murine homologue, mSERINC3, had no antiretroviral role either in vivo or in vitro. To our knowledge, this report provides the first data showing that SERINC5 restricts retrovirus infection in vivo and that restriction of retrovirus infectivity in vivo is dependent on the presence of both glyco-Gag and the viral envelope. IMPORTANCE This study examined for the first time the in vivo function of the serine incorporator (SERINC) proteins during retrovirus infection. SERINC3 and SERINC5 (SERINC3/5) restrict a number of retroviruses, including human immunodeficiency virus 1 (HIV-1) and murine leukemia virus (MLV), by blocking their entry into cells. Nevertheless, HIV-1 and MLV encode factors, Nef and glycosylated Gag, respectively, that counteract SERINC3/5 in vitro. We recently developed SERINC3 and SERINC5 knockout mice to examine the in vivo function of these genes. We found that SERINC5 restriction is dependent on the absence of glycosylated Gag and the expression of a specific viral envelope glycoprotein. On the other hand, SERINC3 had no antiviral function. Our findings have implications for the development of therapeutics that target SERINC5 during retrovirus infection.


2020 ◽  
Author(s):  
Qi Shen ◽  
Chaoyi Xu ◽  
Sooin Jang ◽  
Qiancheng Xiong ◽  
Swapnil C. Devarkar ◽  
...  

SummaryThe capsid of human immunodeficiency virus 1 (HIV-1) plays a pivotal role in viral nuclear import, but the mechanism by which the viral core passages the nuclear pore complex (NPC) is poorly understood. Here, we use DNA-origami mimics of the NPC, termed NuPODs (NucleoPorins Organized by DNA), to reveal the mechanistic underpinnings of HIV-1 capsid nuclear entry. We found that trimeric interface formed via three capsid protein hexamers is targeted by a triple-arginine (RRR) motif but not the canonical phenylalanine-glycine (FG) motif of NUP153. As NUP153 is located on the nuclear face of the NPC, this result implies that the assembled capsid must cross the NPC in vivo. This hypothesis is corroborated by our observations of tubular capsid assemblies penetrating through NUP153 NuPODs. NUP153 prefers to bind highly curved capsid assemblies including those found at the tips of viral cores, thereby facilitating capsid insertion into the NPC. Furthermore, a balance of capsid stabilization by NUP153 and deformation by CPSF6, along with other cellular factors, may allow for the intact capsid to pass NPCs of various sizes. The NuPOD system serves as a unique tool for unraveling the previously elusive mechanisms of nuclear import of HIV-1 and other viruses.


2005 ◽  
Vol 79 (20) ◽  
pp. 12674-12680 ◽  
Author(s):  
Gabriela Bleiber ◽  
Margaret May ◽  
Raquel Martinez ◽  
Pascal Meylan ◽  
Jürg Ott ◽  
...  

ABSTRACT Humans differ substantially with respect to susceptibility to human immunodeficiency virus type 1 (HIV-1). We evaluated variants of nine host genes participating in the viral life cycle for their role in modulating HIV-1 infection. Alleles were assessed ex vivo for their impact on viral replication in purified CD4 T cells from healthy blood donors (n = 128). Thereafter, candidate alleles were assessed in vivo in a cohort of HIV-1-infected individuals (n = 851) not receiving potent antiretroviral therapy. As a benchmark test, we tested 12 previously reported host genetic variants influencing HIV-1 infection as well as single nucleotide polymorphisms in the nine candidate genes. This led to the proposition of three alleles of PML, TSG101, and PPIA as potentially associated with differences in progression of HIV-1 disease. In a model considering the combined effects of new and previously reported gene variants, we estimated that their effect might be responsible for lengthening or shortening by up to 2.8 years the period from 500 CD4 T cells/μl to <200 CD4 T cells/μl.


Sign in / Sign up

Export Citation Format

Share Document