Host range mutants of human rhinovirus in which nonstructural proteins are altered.

1983 ◽  
Vol 48 (2) ◽  
pp. 410-418 ◽  
Author(s):  
F H Yin ◽  
N B Lomax
Author(s):  
Bingtian Shi ◽  
Qinqin Song ◽  
Xiaonuan Luo ◽  
Juan Song ◽  
Dong Xia ◽  
...  

2002 ◽  
Vol 76 (9) ◽  
pp. 4287-4293 ◽  
Author(s):  
Birgit Bossert ◽  
Karl-Klaus Conzelmann

ABSTRACT Bovine respiratory syncytial virus (BRSV) escapes from cellular responses to alpha/beta interferon (IFN-α/β) by a concerted action of the two viral nonstructural proteins, NS1 and NS2. Here we show that the NS proteins of human RSV (HRSV) are also able to counteract IFN responses and that they have the capacity to protect replication of an unrelated rhabdovirus. Even combinations of BRSV and HRSV NS proteins showed a protective activity, suggesting common mechanisms and cellular targets of HRSV and BRSV NS proteins. Although able to cooperate, NS proteins from BRSV and HRSV showed differential protection capacity in cells from different hosts. A chimeric BRSV with HRSV NS genes (BRSV h1/2) was severely attenuated in bovine IFN competent MDBK and Klu cells, whereas it replicated like BRSV in IFN-incompetent Vero cells or in IFN-competent human HEp-2 cells. After challenge with exogenous IFN-α, BRSV h1/2 was better protected than wild-type BRSV in human HEp-2 cells. In contrast, in cells of bovine origin, BRSV h1/2 was much less resistant to exogenous IFN than wild-type BRSV. These data demonstrate that RSV NS1 and NS2 proteins are major determinants of host range. The differential IFN escape capacity of RSV NS proteins in cells from different hosts provides a basis for rational development of attenuated live RSV vaccines.


2005 ◽  
Vol 79 (14) ◽  
pp. 9315-9319 ◽  
Author(s):  
Mindy S. Lo ◽  
Robert M. Brazas ◽  
Michael J. Holtzman

ABSTRACT Respiratory syncytial virus (RSV) subverts the antiviral interferon (IFN) response, but the mechanism for this evasion was unclear. Here we show that RSV preferentially inhibits IFN-α/β signaling by expression of viral NS1 and NS2. Thus, RSV infection or expression of recombinant NS1 and NS2 in epithelial host cells causes a marked decrease in Stat2 levels and the consequent downstream IFN-α/β response. Similarly, NS1/NS2-deficient RSV no longer decreases Stat2 levels or IFN responsiveness. RSV infection decreased human but not mouse Stat2 levels, so this mechanism of IFN antagonism may contribute to viral host range, as well as immune subversion.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
JM Rollinger ◽  
TM Steindl ◽  
K Anrain ◽  
EP Ellmerer ◽  
M Schmidtke ◽  
...  

2016 ◽  
Author(s):  
Niklas Janz
Keyword(s):  

2019 ◽  
Vol 18 (2) ◽  
pp. 127
Author(s):  
Purnama Hidayat ◽  
Denny Bintoro ◽  
Lia Nurulalia ◽  
Muhammad Basri

Species identification, host range, and identification key of whiteflies of Bogor and surrounding area. Whitefly (Hemiptera: Aleyrodidae) is a group of insects that are small, white, soft-bodied, and easily found on various agricultural crops. Whitefly is a phytophagous insect; some species are important pests in agricultural crops that can cause direct damage and can become vectors of viral diseases. The last few years the damage caused by whitefly in Indonesia has increased. Unfortunately, information about their species and host plants in Indonesia, including in Bogor, is still limited. Kalshoven, in his book entitled Pest of Crops in Indonesia, published in the 1980s reported that there were 9 species of whitefly in Indonesia. The information on the book should be reconfirmed. Therefore, this study was conducted to determine whitefly species and its host plants in Bogor and its surroundings. Whiteflies is identified based on the ‘puparia’ (the last instar of the nymph) collected from various agricultural plants, ornamental plants, weeds, and forest plants. A total of 35 species of whiteflies were collected from 74 species and 29 families of plants. The collwcted whiteflies consist of four species belong to Subfamily Aleurodicinae and 31 species of Subfamily Aleyrodinae. The most often found whitefly species were Aleurodicus dispersus, A. dugesii, and Bemisia tabaci. A dichotomous identification key of whiteflies was completed based on morphological character of 35 collected species. The number of whitefly species in Bogor and surrounding areas were far exceeded the number of species reported previously by Kalshoven from all regions in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document