scholarly journals Molecular and Cellular Analysis of Human Immunodeficiency Virus-Induced Apoptosis in Lymphoblastoid T-Cell-Line-Expressing Wild-Type and Mutated CD4 Receptors

1998 ◽  
Vol 72 (10) ◽  
pp. 8061-8072 ◽  
Author(s):  
Laure Moutouh ◽  
Jérôme Estaquier ◽  
Douglas D. Richman ◽  
Jacques Corbeil

ABSTRACT We have previously shown that the presence of the CD4 cytoplasmic tail is critical for human immunodeficiency virus (HIV)-induced apoptosis (J. Corbeil, M. Tremblay, and D. D. Richman, J. Exp. Med. 183:39–48, 1996). We have pursued our investigation of the role of the CD4 transduction pathway in HIV-induced apoptosis. To do this, wild-type and mutant forms of the CD4 cytoplasmic tail were stably expressed in the lymphoblastoid T-cell line A2.01. Apoptosis was prevented when CD4 truncated at residue 402 was expressed; however, cells expressing mutated receptors that do not associate with p56 lck (mutated at the dicysteine motif and truncated at residue 418) but which conserved proximal domains of the cytoplasmic tail underwent apoptosis like wild-type CD4. The differences between wild-type and mutated receptors in the induction of apoptosis were not related to levels of p56 lck or NF-κB activation. Initial signaling through the CD4 receptor played a major role in the sensitization of HIV-infected T cells to undergo apoptosis. Incubation of HIV-infected cells with monoclonal antibody (MAb) 13B8-2, which binds to CD4 in a region critical for dimerization of the receptor, prevented apoptosis without inhibiting HIV replication. Moreover, the apoptotic process was not related to Fas-Fas ligand interaction; however, an antagonistic anti-Fas MAb (ZB-4) enhanced apoptosis in HIV-infected cells without inducing apoptosis in uninfected cells. These observations demonstrate that CD4 signaling mediates HIV-induced apoptosis by a mechanism independent of Fas-Fas ligand interaction, does not require p56 lck signaling, and may involve a critical region for CD4 dimerization.

1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


2006 ◽  
Vol 75 (2) ◽  
pp. 684-696 ◽  
Author(s):  
Steven P. O'Hara ◽  
Aaron J. Small ◽  
Jeremy B. Nelson ◽  
Andrew D. Badley ◽  
Xian-Ming Chen ◽  
...  

ABSTRACT While Cryptosporidium parvum infection of the intestine has been reported in both immunocompetent and immunocompromised individuals, biliary infection is seen primarily in adult AIDS patients and is associated with development of AIDS cholangiopathy. However, the mechanisms of pathogen-induced AIDS cholangiopathy remain unclear. Since we previously demonstrated that the Fas/Fas ligand (FasL) system is involved in paracrine-mediated C. parvum cytopathicity in cholangiocytes, we also tested the potential synergistic effects of human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat)-mediated FasL regulation on C. parvum-induced apoptosis in cholangiocytes by semiquantitative reverse transcription-PCR, immunoblotting, immunofluorescence analysis, and immunogold electron microscopy. H69 cells do not express CXCR4 and CCR5, which are receptors required for direct HIV-1 viral infection. However, recombinant biologically active HIV-1-associated Tat protein increased FasL expression in the cytoplasm of cholangiocytes without a significant increase in apoptosis. We found that C. parvum-induced apoptosis was associated with translocation of intracellular FasL to the cell membrane surface and release of full-length FasL from infected H69 cells. Tat significantly (P < 0.05) increased C. parvum-induced apoptosis in bystander cells in a dose-dependent manner. Moreover, Tat enhanced both C. parvum-induced FasL membrane translocation and release of full-length FasL. In addition, the FasL neutralizing antibody NOK-1 and the caspase-8 inhibitor Z-IETD-fmk both blocked C. parvum-induced apoptosis in cholangiocytes. The data demonstrated that HIV-1 Tat enhances C. parvum-induced cholangiocyte apoptosis via a paracrine-mediated, FasL-dependent mechanism. Our results suggest that concurrent active HIV replication, with associated production of Tat protein, and C. parvum infection synergistically increase cholangiocyte apoptosis and thus jointly contribute to AIDS-related cholangiopathies.


2002 ◽  
Vol 76 (16) ◽  
pp. 8118-8123 ◽  
Author(s):  
Yael D. Korin ◽  
David G. Brooks ◽  
Stephen Brown ◽  
Andrew Korotzer ◽  
Jerome A. Zack

ABSTRACT Human immunodeficiency virus (HIV) replication is linked to cellular gene transcription and requires target cell activation. The latent reservoir of HIV-1 in quiescent T cells is thought to be a major obstacle to clearance of infection by highly active antiretroviral therapy (HAART). Thus, identification of agents that can induce expression of latent virus may, in the presence of HAART, allow elimination of the infected cells by the immune response. We previously used the SCID-hu (Thy/Liv) mouse model to establish that activation-inducible HIV can be generated at high frequency during thymopoiesis. Latently infected mature thymocytes can be exported into the periphery, providing an efficient primary cell model to determine cellular activation signals that induce renewed expression of latent virus. Here we characterized the effects of prostratin, a non-tumor-promoting phorbol ester, on primary human peripheral blood lymphocytes (PBLs) and assessed its ability to reactivate latent HIV infection from thymocytes and PBLs in the SCID-hu (Thy/Liv) model. Prostratin stimulation alone did not induce proliferation of quiescent PBLs; however, it could provide a secondary signal in the context of T-cell receptor stimulation or a primary activation signal in the presence of CD28 stimulation to induce T-cell proliferation. While prostratin alone was not sufficient to allow de novo HIV infection, it efficiently reactivated HIV expression from latently infected cells generated in the SCID-hu mouse. Our data indicate that prostratin alone is able to specifically reactivate latent virus in the absence of cellular proliferation, making it an attractive candidate for further study as an adjunctive therapy for the elimination of the latent HIV reservoir.


Virus Genes ◽  
1991 ◽  
Vol 5 (3) ◽  
pp. 189-202 ◽  
Author(s):  
Jun-Ichiro Gyotoku ◽  
Mohamed A. El-Farrash ◽  
Shinji Fujimoto ◽  
Wilfred T. V. Germeraad ◽  
Yoshihiko Watanabe ◽  
...  

1991 ◽  
Vol 173 (1) ◽  
pp. 1-5 ◽  
Author(s):  
P Rieckmann ◽  
G Poli ◽  
J H Kehrl ◽  
A S Fauci

Freshly isolated B lymphocytes from patients infected with human immunodeficiency virus (HIV), in contrast to B cells from normal controls, were shown to induce viral expression in two cell lines: ACH-2, a T cell line, and U1, a promonocytic cell line, which are chronically infected with HIV, as well as in autologous T cells. In 10 out of 10 HIV-infected individuals with hypergammaglobulinemia, spontaneous HIV-inductive capacity was found with highly purified peripheral blood B cells, whereas peripheral blood or tonsillar B cells from six healthy, HIV-negative donors did not induce HIV expression unless the cells were stimulated in vitro. The induction of HIV expression was observed in direct coculture experiments of B lymphocytes and HIV-infected cells, and could also be mediated by supernatants from cultures of B cells. Significantly higher amounts of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) were detected in the B cell culture supernatants from HIV-infected patients with hypergammaglobulinemia (IL-6: mean = 536 pg/ml; TNF-alpha: mean = 493 pg/ml), as compared with normal uninfected controls (IL-6: mean = 18 pg/ml; TNF-alpha: mean = 23 pg/ml). Antibodies against these cytokines abolished the HIV-inductive capacity of B cells. We conclude that in vivo activated B cells in HIV-infected individuals can upregulate the expression of virus in infected cells by secreting cytokines such as TNF-alpha and IL-6, and, therefore, may play a role in the progression of HIV infection.


2003 ◽  
Vol 77 (2) ◽  
pp. 1131-1140 ◽  
Author(s):  
Sandra Kao ◽  
Hirofumi Akari ◽  
Mohammad A. Khan ◽  
Markus Dettenhofer ◽  
Xiao-Fang Yu ◽  
...  

ABSTRACT Packaging of the human immunodeficiency virus type 1 Vif protein into virus particles is mediated through an interaction with viral genomic RNA and results in the association of Vif with the nucleoprotein complex. Despite the specificity of this process, calculations of the amount of Vif packaged have produced vastly different results. Here, we compared the efficiency of packaging of Vif into virions derived from acutely and chronically infected H9 cells. We found that Vif was efficiently packaged into virions from acutely infected cells (60 to 100 copies per virion), while packaging into virions from chronically infected H9 cells was near the limit of detection (four to six copies of Vif per virion). Superinfection by an exogenous Vif-defective virus did not rescue packaging of endogenous Vif expressed in the chronically infected culture. In contrast, exogenous Vif expressed by superinfection of wild-type virus was readily packaged (30 to 40 copies per virion). Biochemical analyses suggest that the differences in the relative packaging efficiencies were not due to gross differences in the steady-state distribution of Vif in chronically or acutely infected cells but are likely due to differences in the relative rates of de novo synthesis of Vif. Despite its low packaging efficiency, endogenously expressed Vif was sufficient to direct the production of viruses with almost wild-type infectivity. The results from our study provide novel insights into the biochemical properties of Vif and offer an explanation for the reported differences regarding Vif packaging.


1998 ◽  
Vol 72 (2) ◽  
pp. 1052-1059 ◽  
Author(s):  
Susan Zolla-Pazner ◽  
Michael Lubeck ◽  
Serena Xu ◽  
Sherri Burda ◽  
Robert J. Natuk ◽  
...  

ABSTRACT Five chimpanzees were immunized by administration of one or more intranasal priming doses of one to three recombinant adenoviruses containing a gp160 insert from human immunodeficiency virus type 1 (HIV-1) MN (HIV-1MN) followed by one or more boosts of recombinant HIV-1SF2 gp120 delivered intramuscularly with MF59 adjuvant. This regimen resulted in humoral immune responses in three of five animals. Humoral responses included immunochemically active anti-HIV-1 antibodies (Abs) directed to recombinant gp120 and neutralizing Abs reactive with T-cell-line-adapted HIV-1MNand HIV-1SF2. In addition, neutralizing activity was detected to the two homologous primary isolates and to two of three heterologous primary isolates which, like the immunizing strains, can use CXCR4 as a coreceptor for infection. The three animals with detectable neutralizing Abs and a fourth exhibiting the best cytotoxic T-lymphocyte response were protected from a low-dose intravenous challenge with a cell-free HIV-1SF2 primary isolate administered 4 weeks after the last boost. Animals were rested for 46 weeks and then rechallenged, without a boost, with an eightfold-higher challenge dose of HIV-1SF2. The three animals with persistent neutralizing Abs were again protected. These data show that a strong, long-lived protective Ab response can be induced with a prime-boost regimen in chimpanzees. The data suggest that in chimpanzees, the presence of neutralizing Abs correlates with protection for animals challenged intravenously with a high dose of a homologous strain of HIV-1, and they demonstrate for the first time the induction of neutralizing Abs to homologous and heterologous primary isolates.


Sign in / Sign up

Export Citation Format

Share Document