scholarly journals Isolation and Characterization of a Neuropathogenic Simian Immunodeficiency Virus Derived from a Sooty Mangabey

1998 ◽  
Vol 72 (11) ◽  
pp. 8841-8851 ◽  
Author(s):  
Francis J. Novembre ◽  
Juliette De Rosayro ◽  
Shawn P. O’Neil ◽  
Daniel C. Anderson ◽  
Sherry A. Klumpp ◽  
...  

ABSTRACT Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease.

2001 ◽  
Vol 75 (6) ◽  
pp. 2776-2785 ◽  
Author(s):  
Yongjun Guan ◽  
James B. Whitney ◽  
Chen Liang ◽  
Mark A. Wainberg

ABSTRACT We have constructed a series of simian immunodeficiency virus (SIV) mutants containing deletions within a 97-nucleotide (nt) region of the leader sequence. Deletions in this region markedly decreased the replication capacity in tissue culture, i.e., in both the C8166 and CEMx174 cell lines, as well as in rhesus macaque peripheral blood mononuclear cells. In addition, these deletions adversely affected the packaging of viral genomic RNA into virions, the processing of Gag precursor proteins, and patterns of viral proteins in virions, as assessed by biochemical labeling and polyacrylamide gel electrophoresis. Different levels of attenuation were achieved by varying the size and position of deletions within this 97-nt region, and among a series of constructs that were generated, it was possible to rank in vitro virulence relative to that of wild-type virus. In all of these cases, the most severe impact on viral replication was observed when the deletions that were made were located at the 3′ rather than 5′ end of the leader region. The potential of viral reversion over protracted periods was investigated by repeated viral passage in CEMx174 cells. The results showed that several of these constructs showed no signs of reversion after more than 6 months in tissue culture. Thus, a series of novel, attenuated SIV constructs have been developed that are significantly impaired in replication capacity yet retain all viral genes. One of these viruses, termed SD4, may be appropriate for study with rhesus macaques, in order to determine whether reversions will occur in vivo and to further study this virus as a candidate for attenuated vaccination.


1998 ◽  
Vol 72 (1) ◽  
pp. 600-608 ◽  
Author(s):  
Marie Claude Georges-Courbot ◽  
Chong Yang Lu ◽  
Maria Makuwa ◽  
Paul Telfer ◽  
Richard Onanga ◽  
...  

ABSTRACT A seroprevalence survey was conducted for simian immunodeficiency virus (SIV) antibody in household pet monkeys in Gabon. Twenty-nine monkeys representing seven species were analyzed. By using human immunodeficiency virus type 2 (HIV-2)/SIVsm, SIVmnd, and SIVagm antigens, one red-capped mangabey (RCM) (Cercocebus torquatus torquatus) was identified as harboring SIV-cross-reactive antibodies. A virus isolate, termed SIVrcm, was subsequently established from this seropositive RCM by cocultivation of its peripheral blood mononuclear cells (PBMC) with PBMC from seronegative humans or RCMs. SIVrcm was also isolated by cocultivation of CD8-depleted RCM PBMC with Molt 4 clone 8 cells but not with CEMx174 cells. The lack of growth in CEMx174 cells distinguished this new SIV from all previously reported sooty mangabey-derived viruses (SIVsm), which grow well in this cell line. SIVrcm was also successfully transmitted (cell free) to human and rhesus PBMC as well as to Molt 4 clone 8 cells. To determine the evolutionary origins of this newly identified virus, subgenomic pol (475 bp) andgag (954 bp) gene fragments were amplified from infected cell culture DNA and sequenced. The position of SIVrcm relative to those of members of the other primate lentivirus lineages was then examined in evolutionary trees constructed from deduced protein sequences. This analysis revealed significantly discordant phylogenetic positions of SIVrcm in the two genomic regions. In trees derived from partial gag sequences, SIVrcm clustered independently from all other HIV and SIV strains, consistent with a new primate lentivirus lineage. However, in trees derived frompol sequences, SIVrcm grouped with the HIV-1/SIVcpz lineage. These findings suggest that the SIVrcm genome is mosaic and possibly is the result of a recombination event involving divergent lentiviruses in the distant past. Further analysis of this and other SIVrcm isolates may shed new light on the origin of HIV-1.


Author(s):  
Robert J. Munn ◽  
Preston Marx ◽  
Betsy Brotman ◽  
Aloysius Hanson

Simian immunodeficiency virus (SIV) is a Lentivirus that exhibits both morphological and genomic similarities to HIV. SIV has been isolated from sooty mangabeys in several primate colonies, and has been shown to be about 80% related to HTV-2. Since HIV-2 and sooty mangabeys are both indigenous to West Africa, isolation of a virus from sooty mangabeys in West Africa would be of great interest in determining the origins of these two viruses. We report here thin section transmission electron microscopy of a lentivirus from a pet sooty mangabey living in Liberia, West Africa.Peripheral blood mononuclear cells (PEMC) from a healthy pet sooty mangabey in Liberia were frozen in liquid nitrogen and shipped to the California Primate Research Center. The cells were thawed and stimulated for 72h with 0.5μg/ml Staphylococcal enterotoxin A in RPMI 1640 containing 10% fetal calf serum. 2×106 PEMC were then co-cultivated with 2×106 CEMxl74 cells and processed for EM.CEMxl74 cells co-cultivated with infected PBMC exhibited syncytial giant cells with patchy foamy cytoplasm (Fig 1). large numbers of virus particles were observed within these vacuoles (Fig 2).


2006 ◽  
Vol 80 (3) ◽  
pp. 1463-1475 ◽  
Author(s):  
Takeo Kuwata ◽  
Houman Dehghani ◽  
Charles R. Brown ◽  
Ronald Plishka ◽  
Alicia Buckler-White ◽  
...  

ABSTRACT A minor fraction of simian immunodeficiency virus (SIV)-infected macaques progress rapidly to AIDS in the absence of SIV-specific immune responses. Common mutations in conserved residues of env in three SIVsmE543-3-infected rapid-progressor (RP) macaques suggest the evolution of a common viral variant in RP macaques. The goal of the present study was to analyze the biological properties of these variants in vitro and in vivo through the derivation of infectious molecular clones. Virus isolated from a SIVsmE543-3-infected RP macaque, H445 was used to inoculate six naive rhesus macaques. Although RP-specific mutations dominated in H445 tissues, they represented only 10% of the population of the virus stock, suggesting a selective disadvantage in vitro. Only one of these macaques (H635) progressed rapidly to AIDS. Plasma virus during primary infection of H635 was similar to the inoculum. However, RP-specific mutations were apparently rapidly reselected by 4 to 9 weeks postinfection. Terminal plasma from H635 was used as a source of viral RNA to generate seven full-length, infectious molecular clones. With the exception of one clone, which was similar to SIVsmE543-3, clones with RP-specific mutations replicated with delayed kinetics in rhesus peripheral blood mononuclear cells and human T-cell lines. None of the clones replicated in monocyte-derived or alveolar macrophages, and all used CCR5 as their major coreceptor. RP variants appear to be well adapted to replicate in vivo in RP macaques but are at a disadvantage in tissue culture compared to their parent, SIVsmE543-3. Therefore, tissue culture may not provide a good surrogate for replication of RP variants in macaques. These infectious clones will provide a valuable reagent to study the roles of specific viral variants in rapid progression in vivo.


2008 ◽  
Vol 82 (18) ◽  
pp. 9171-9178 ◽  
Author(s):  
Mireille Centlivre ◽  
Bep Klaver ◽  
Ben Berkhout ◽  
Atze T. Das

ABSTRACT Transcription of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is activated through binding of the viral Tat protein to the trans-activating response (TAR) element at the 5′ end of the nascent transcript. Whereas HIV type 1 (HIV-1) TAR folds a simple hairpin structure, the corresponding domains of HIV-2 and SIVmac exhibit a more complex structure composed of three stem-loops. This structural polymorphism may be attributed to additional functions of TAR in HIV-2/SIVmac replication. We recently constructed an SIVmac variant that does not require the Tat-TAR interaction for transcription. We used this variant to study additional roles of TAR in SIVmac replication and generated mutants with a truncated TAR structure. We demonstrate that partial or nearly complete removal of TAR does not impair viral transcription, RNA processing, and translation. Moreover, these deletions do not significantly affect virus replication in the PM1 T-cell line and macaque peripheral blood mononuclear cells. These results demonstrate that the complex TAR structure in SIVmac has no other essential function in virus replication in vitro besides its role in Tat-mediated activation of transcription.


2001 ◽  
Vol 75 (19) ◽  
pp. 9328-9338 ◽  
Author(s):  
Lennart Holterman ◽  
Rob Dubbes ◽  
James Mullins ◽  
Gerald Learn ◽  
Henk Niphuis ◽  
...  

ABSTRACT End-stage simian immunodeficiency virus (SIV) isolates are suggested to be the most fit of the evolved virulent variants that precipitate the progression to AIDS. To determine if there were common characteristics of end-stage variants which emerge from accelerated cases of AIDS, a molecular clone was derived directly from serum following in vivo selection of a highly virulent SIV isolate obtained by serial end-stage passage in rhesus monkeys (Macaca mulatta). This dominant variant caused a marked cytopathic effect and replicated to very high levels in activated but not resting peripheral blood lymphocytes. Furthermore, although this clone infected but did not replicate to detectable levels in rhesus monocyte-derived macrophages, these cells were able to transmit infection to autologous T cells upon contact. Interestingly, although at low doses this end-stage variant did not use any of the known coreceptors except CCR5, it was able to infect and replicate in human peripheral blood mononuclear cells homozygous for the Δ32 deletion of CCR5, suggesting the use of a novel coreceptor. It represents the first pathogenic molecular clone of SIV derived from viral RNA in serum and provides evidence that not only the genetic but also the biological characteristics acquired by highly fit late-stage disease variants may be distinct in different hosts.


1996 ◽  
Vol 40 (5) ◽  
pp. 1072-1077 ◽  
Author(s):  
C G Bridges ◽  
D L Taylor ◽  
P S Ahmed ◽  
T M Brennan ◽  
J M Hornsperger ◽  
...  

The novel acyclonucleotide derivative of guanine, 9-[2-methylidene-3-(phosphonomethoxy)propyl] guanine (MDL 74,968), had antiviral activity comparable to those of 9-(2-phosphonomethoxyethyl) adenine (PMEA) and 2',3'-dideoxyinosine against laboratory strains of both human immunodeficiency virus (HIV) types 1 and 2 cultured in MT-4 cells and several clinical HIV isolates cultured in human peripheral blood mononuclear cells (PBMCs). MDL 74,968 was at least fourfold less toxic than PMEA to MT-4 cells or PBMCs, thereby producing a more favorable in vitro selectivity index for the former compound. Studies of acute toxicity in CD-1 mice showed that MDL 74,968 was not toxic at doses of 1,600 mg/kg of body weight via the intraperitoneal route or at doses of 500 mg/kg via the intravenous route. Furthermore, no adverse effects of MDL 74,968 were apparent when mice were treated at doses of 200 mg/kg twice daily for 5 days. Treatment by continuous subcutaneous infusion of MDL 74,968 or PMEA at the daily dose of 20 mg/kg in the hu-PBL-SCID.beige murine model of HIV infection significantly reduced the severity of infection compared with that in placebo-treated controls. Quantitation of virus recovery by endpoint titration of spleen cells in coculture with mitogen-activated PBMCs demonstrated that MDL 74,968 as well as PMEA significantly reduced the amount of virus (P < 0.02). Moreover, by using DNA extracted from spleens, the mean HIV:HLA PCR product ratio, which takes into account individual variation in immune system reconstitution, were 0.50 and 0.40 for MDL 74,968 and PMEA treatments, respectively, whereas animals receiving the placebo control had significantly higher levels of HIV proviral DNA (mean 0.78; P < 0.02). Taken together, these promising findings suggest that an orally bioavailable prodrug of MDL 74,968 should be developed for the treatment of HIV infection.


2015 ◽  
Vol 90 (5) ◽  
pp. 2316-2331 ◽  
Author(s):  
Nadeene E. Riddick ◽  
Fan Wu ◽  
Kenta Matsuda ◽  
Sonya Whitted ◽  
Ilnour Ourmanov ◽  
...  

ABSTRACTAfrican green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIVin vivo, while human-derived CXCR6 and GPR15 also appear to be usedin vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptorsin vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4+T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4+T cells and are potential alternative coreceptors for SIVagm usein vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals.IMPORTANCEAfrican green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cellsin vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptorsin vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entryin vitroand may serve as entry coreceptors for SIVagmin vivo, since their mRNAs were detected in AGM memory CD4+T cells, the preferred target cells of SIV.


2000 ◽  
Vol 74 (15) ◽  
pp. 6720-6724 ◽  
Author(s):  
Sujatha Iyengar ◽  
David H. Schwartz ◽  
Janice E. Clements ◽  
James E. K. Hildreth

ABSTRACT Most simian immunodeficiency virus (SIV), human immunodeficiency virus type 2 (HIV-2), and HIV-1 infection of host peripheral blood mononuclear cells (PBMCs) is CD4 dependent. In some cases, X4 HIV-1 chemotaxis is CD4 independent, and cross-species transmission might be facilitated by CD4-independent entry, which has been demonstrated for some SIV strains in CD4− non-T cells. As expected for CCR5-dependent virus, SIV required CD4 on rhesus and pigtail macaque PBMCs for infection and chemotaxis. However, SIV induced the chemotaxis of human PBMCs in a CD4-independent manner. Furthermore, in contrast to the results of studies using transfected human cell lines, SIV did not require CD4 binding to productively infect primary human PBMCs. CD4-independent lymphocyte and macrophage infection may facilitate cross-species transmission, while reacquisition of CD4 dependence may confer a selective advantage for the virus within new host species.


Sign in / Sign up

Export Citation Format

Share Document