scholarly journals Tat-Associated Kinase, TAK, Activity Is Regulated by Distinct Mechanisms in Peripheral Blood Lymphocytes and Promonocytic Cell Lines

1998 ◽  
Vol 72 (12) ◽  
pp. 9881-9888 ◽  
Author(s):  
Christine H. Herrmann ◽  
Richard G. Carroll ◽  
Ping Wei ◽  
Katherine A. Jones ◽  
Andrew P. Rice

ABSTRACT TAK, a multisubunit cellular protein kinase that specifically associates with the human immunodeficiency virus Tat proteins and hyperphosphorylates the carboxyl-terminal domain of RNA polymerase II, is a cofactor for Tat and mediates its transactivation function. The catalytic subunit of TAK has been identified as cyclin-dependent kinase Cdk9, and its regulatory partner has been identified as cyclin T1; these proteins are also components of positive transcription elongation factor P-TEFb. TAK activity is up-regulated upon activation of peripheral blood lymphocytes and following macrophage differentiation of promonocytic cell lines. We have found that activation of peripheral blood lymphocytes results in increased mRNA and protein levels of both Cdk9 and cyclin T1. Cdk9 and cyclin T1 induction occurred in purified CD4+ primary T cells activated by a variety of stimuli. In contrast, phorbol ester-induced differentiation of promonocytic cell lines into macrophage-like cells produced a large induction of cyclin T1 protein expression from nearly undetectable levels, while Cdk9 protein levels remained at a constant high level. Measurements of cyclin T1 mRNA levels in a promonocytic cell line suggested that regulation of cyclin T1 occurs at a posttranscriptional level. These results suggest that cyclin T1 and TAK function may be required in differentiated monocytes and further show that TAK activity can be regulated by distinct mechanisms in different cell types.

2001 ◽  
Vol 75 (23) ◽  
pp. 11336-11343 ◽  
Author(s):  
Romi Ghose ◽  
Li-Ying Liou ◽  
Christine H. Herrmann ◽  
Andrew P. Rice

ABSTRACT Combinations of cytokines are known to reactivate transcription and replication of latent human immunodeficiency virus type 1 (HIV-1) proviruses in resting CD4+ T lymphocytes isolated from infected individuals. Transcription of the HIV-1 provirus by RNA polymerase II is strongly stimulated by the viral Tat protein. Tat function is mediated by a cellular protein kinase known as TAK (cyclin T1/P-TEFb) that is composed of Cdk9 and cyclin T1. We have found that treatment of peripheral blood lymphocytes and purified resting CD4+ T lymphocytes with the combination of interleukin-2 (IL-2), IL-6, and tumor necrosis factor alpha resulted in an increase in Cdk9 and cyclin T1 protein levels and an increase in TAK enzymatic activity. The cytokine induction of TAK in resting CD4+ T lymphocytes did not appear to require proliferation of lymphocytes. These results suggest that induction of TAK by cytokines secreted in the microenvironment of lymphoid tissue may be involved in the reactivation of HIV-1 in CD4+ T lymphocytes harboring a latent provirus.


2019 ◽  
Vol 56 (2) ◽  
pp. 155-159 ◽  
Author(s):  
Mohammad SHOKRZADEH ◽  
Abbas MOHAMMADPOUR ◽  
Mona MODANLOO ◽  
Melika HASSANI ◽  
Nasrin Ghassemi BARGHI ◽  
...  

ABSTRACT BACKGROUND: Gastric cancer is known as the fourth most common cancer. Current treatments for cancer have damaged the sensitive tissues of the healthy body, and in many cases, cancer will be recurrent. Therefore, need for treatments that are more effective is well felt. Researchers have recently shifted their attention towards antipsychotic dopamine antagonists to treat cancer. The anticancer activities of aripiprazole remain unknown. OBJECTIVE: This study aimed to evaluate the efficacy and safety of aripiprazole on gastric cancer and normal cell lines. METHODS: In this regard, the cytotoxicity and genotoxicity of aripiprazole were investigated in MKN45 and NIH3T3 cell lines by methyl tetrazolium assay and on peripheral blood lymphocytes by micronucleus assay. For this purpose, cells were cultured in 96 wells plate. Stock solutions of aripiprazole and cisplatin were prepared. After cell incubation with different concentrations of aripiprazole (1, 10, 25, 50, 100 and 200 μL), methyl tetrazolium solution was added. For micronucleus assay fresh blood was added to RPMI culture medium 1640 supplemented, and different concentrations of aripiprazole (50, 100 and 200 μL) were added. RESULTS: The finding of present study showed that the IC50 of aripiprazole in the cancer cell line (21.36 μg/mL) was lower than that in the normal cell line (54.17 μg/mL). Moreover, the micronucleus assay showed that the frequency of micronuclei of aripiprazole at concentrations below 200 μM was much less than cisplatin. CONCLUSION: Aripiprazole can be a good cytotoxic compound and good candidate for further studies of cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document