scholarly journals Induction of Human Immunodeficiency Virus (HIV)-Specific CD8 T-Cell Responses by Listeria monocytogenes and a Hyperattenuated Listeria Strain Engineered To Express HIV Antigens

2000 ◽  
Vol 74 (21) ◽  
pp. 9987-9993 ◽  
Author(s):  
Rachel S. Friedman ◽  
Fred R. Frankel ◽  
Zhan Xu ◽  
Judy Lieberman

ABSTRACT Induction of cell-mediated immunity may be essential for an effective AIDS vaccine. Listeria monocytogenes is an attractive bacterial vector to elicit T-cell immunity to human immunodeficiency virus (HIV) because it specifically infects monocytes, key antigen-presenting cells, and because natural infection originates at the mucosa. Immunization with recombinant L. monocytogenes has been shown to protect mice from lymphocytic choriomeningitis virus, influenza virus, and tumor inoculation.L. monocytogenes expressing HIV gag elicits sustained high levels of Gag-specific cytotoxic T lymphocytes (CTLs) in mice. We have examined the ability of Listeria to infect human monocytes and present HIV antigens to CD8 T lymphocytes of HIV-infected donors to induce a secondary T-cell immune response. Using this in vitro vaccination protocol, we show that L. monocytogenes expressing the HIV-1 gag gene efficiently provides a strong stimulus for Gag-specific CTLs in HIV-infected donor peripheral blood mononuclear cells.Listeria expressing Nef also elicits a secondary in vitro anti-Nef CTL response. Since L. monocytogenes is a pathogen, before it can be seriously considered as a human vaccine vector, safety concerns must be addressed. We therefore have produced a highly attenuated strain of L. monocytogenes that requiresd-alanine for viability. The recombinant bacteria are attenuated at least 105-fold. We show that when these hyperattenuated bacteria are engineered to express HIV-1 Gag, they are at least as efficient at stimulating Gag-specific human CTLs in vitro as wild-type recombinants. These results suggest that attenuatedListeria is an attractive candidate vaccine vector to induce T-cell immunity to HIV in humans.

2004 ◽  
Vol 78 (19) ◽  
pp. 10536-10542 ◽  
Author(s):  
Jean-Michel Fondere ◽  
Gael Petitjean ◽  
Marie-France Huguet ◽  
Sharon Lynn Salhi ◽  
Vincent Baillat ◽  
...  

ABSTRACT In resting CD4+ T lymphocytes harboring human immunodeficiency virus type 1 (HIV-1), replication-competent virus persists in patients responding to highly active antiretroviral therapy (HAART). This small latent reservoir represents between 103 and 107 cells per patient. However, the efficiency of HIV-1 DNA-positive resting CD4+ T cells in converting to HIV-1-antigen-secreting cells (HIV-1-Ag-SCs) after in vitro CD4+-T-cell polyclonal stimulation has not been satisfactorily evaluated. By using an HIV-1-antigen enzyme-linked immunospot assay, 8 HIV-1-Ag-SCs per 106 CD4+ resting T cells were quantified in 25 patients with a plasma viral load of <20 copies/ml, whereas 379 were enumerated in 10 viremic patients. In parallel, 369 and 1,238 copies of HIV-1 DNA per 106 CD4+ T cells were enumerated in the two groups of patients, respectively. Only a minority of latently HIV-1 DNA-infected CD4+ T cells could be stimulated in vitro to become HIV-1-Ag-SCs, particularly in aviremic patients. The difference between the number of HIV-1 immunospots in viremic versus aviremic patients could be explained by HIV-1 unintegrated viral DNA that gave additional HIV-1-Ag-SCs after in vitro CD4+-T-cell polyclonal stimulation. The ELISPOT approach to targeting the HIV-1-Ag-SCs could be a useful method for identifying latently HIV-1-infected CD4+ T cells carrying replication-competent HIV-1 in patients responding to HAART.


2005 ◽  
Vol 79 (12) ◽  
pp. 7728-7737 ◽  
Author(s):  
Ivan Stratov ◽  
C. Jane Dale ◽  
Socheata Chea ◽  
James McCluskey ◽  
Stephen J. Kent

ABSTRACT Antiretroviral drug-resistant human immunodeficiency virus type 1 (HIV-1) is a major, growing, public health problem. Immune responses targeting epitopes spanning drug resistance sites could ameliorate development of drug resistance. We studied 25 individuals harboring multidrug-resistant HIV-1 for T-cell immunity to HIV-1 proteins and peptides spanning all common drug resistance mutations. CD8 T cells targeting epitopes spanning drug-induced mutations were detected but only in the 3 individuals with robust HIV-specific T-cell activity. Novel CD8 T-cell responses were detected against the common L63P and L10I protease inhibitor fitness mutations. Induction of T-cell immunity to drug-resistant variants was demonstrated in simian human immunodeficiency virus-infected macaques, where both CD8 and CD4 T-cell immune responses to reverse transcriptase and protease antiretroviral mutations were elicited using a novel peptide-based immunotherapy. T-cell responses to antiretroviral resistance mutations were strongest in the most immunocompetent animals. This study suggests feasible strategies to further evaluate the potential of limiting antiretroviral drug resistance through induction of T-cell immunity.


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.


1990 ◽  
Vol 172 (4) ◽  
pp. 1151-1158 ◽  
Author(s):  
B Ardman ◽  
M A Sikorski ◽  
M Settles ◽  
D E Staunton

Sera from human immunodeficiency virus type 1 (HIV-1)-infected and -noninfected individuals were screened for antibodies that could bind to native T cell differentiation antigens. Antibodies that could immunoprecipitate CD43 (sialophorin, leukosialin) from a T cell lymphoma line were detected in sera from 27% of patients, and antibodies that could bind specifically to transfected cells expressing CD43 were detected in 47% of patients. The anti-CD43 antibodies were related to HIV-1 infection in that no patients with other chronic viral infections or systemic lupus erythematosus contained such antibodies in their sera. The anti-CD43 autoantibodies bound to a partially sialylated form of CD43 expressed by normal human thymocytes, but not by normal, circulating T lymphocytes. However, the determinant(s) recognized by the anti-CD43 autoantibodies was present on a large proportion of circulating T lymphocytes, but masked from antibody recognition by sialic acid residues. These results demonstrate that HIV-1 infection is specifically associated with the production of autoantibodies that bind to a native T cell surface antigen.


1991 ◽  
Vol 173 (2) ◽  
pp. 511-514 ◽  
Author(s):  
G Pantaleo ◽  
L Butini ◽  
C Graziosi ◽  
G Poli ◽  
S M Schnittman ◽  
...  

In the present study, we demonstrated that expression of the LFA-1 molecule is necessary for cell fusion and syncytia formation in human immunodeficiency virus (HIV)-infected CD4+ T lymphocytes. In contrast, the lack of expression of LFA-1 does not influence significantly cell-to-cell transmission of HIV. In fact, LFA-1- T lymphocytes obtained from a leukocyte adhesion deficiency patient were unable to fuse and form syncytia when infected with HIV-1 or HIV-2, despite the fact that efficiency of HIV infection (i.e., virus entry, HIV spreading, and levels of virus replication) was comparable with that observed in LFA-1+ T lymphocytes. In addition, we provide evidence that LFA-1 by mediating cell fusion contributes to the depletion of HIV-infected CD4+ T lymphocytes in vitro.


1999 ◽  
Vol 73 (12) ◽  
pp. 9899-9907 ◽  
Author(s):  
Amanda Brown ◽  
Xia Wang ◽  
Earl Sawai ◽  
Cecilia Cheng-Mayer

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication in both primary T lymphocytes and monocyte-derived macrophages. This enhancement phenotype has been linked to the ability of Nef to modulate the activity of cellular kinases. We find that despite the reported high-affinity interaction between Nef and the Src kinase Hck in vitro, a Nef-Hck interaction in the context of HIV-1-infected primary macrophages is not detectable. However, Nef binding and activation of the PAK-related kinase and phosphorylation of its substrate could be readily detected in both infected primary T lymphocytes and macrophages. Furthermore, we show that this substrate is a complex composed of the recently characterized PAK interacting partner PIX (PAK-interacting guanine nucleotide exchange factor) and its tightly associated p95 protein. PAK and PIX-p95 appear to be differentially activated and phosphorylated depending on the intracellular environment in which nef is expressed. These results identify the PIX-p95 complex as a novel effector of Nef in primary cells and suggest that the regulation of the PAK signaling pathway may differ in T cells and macrophages.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2481-2487 ◽  
Author(s):  
A Macho ◽  
M Castedo ◽  
P Marchetti ◽  
JJ Aguilar ◽  
D Decaudin ◽  
...  

Abstract In several models of lymphocyte apoptosis, two alterations of mitochondrial function precede advanced DNA fragmentation: (1) a reduction of mitochondrial transmembrane potential (delta psi m) and (2) an increase in mitochondrial generation of superoxide anion. Here we show that two fluorochromes allow for the identification of analogous mitochondrial perturbations in circulating T lymphocytes from human immunodeficiency virus (HIV)-1+ donors. The first among these fluorochromes, the cationic lipophilic dye DiOC6(3), measures delta psi m; the second marker, hydroethidine (HE), is nonfluorescent, unless it is oxidized by superoxide anions to the product ethidium (Eth). CD4+ or CD8+ cells from clinically asymptomatic HIV-1 carriers contain a significantly elevated percentage of cells endowed with enhanced HE --> Eth conversion and/or reduced DiOC6(3) uptake as compared with normal controls. Phenotypic characterization of (HE --> Eth)high cells from HIV+ donors shows that these cells possess a low delta psi m, thus demonstrating a functional alteration of mitochondria. In addition, (HE --> Eth)high cells display a reduced incorporation of the cardiolipin-specific dye nonyl-acridine orange (NAO), showing a structural defect of the cardiolipin-containing inner mitochondrial membrane. Control experiments involving rotenone, an inhibitor of the respiratory chain complex I, indicate that the reactive oxygen species responsible for HE --> Eth conversion is generated during mitochondrial electron transport. In synthesis, it appears that mitochondrial alterations occur in a significant percentage of circulating T lymphocytes from HIV-1 carriers. The extent of delta psi m reduction, as determined ex vivo, correlates with the frequency of cells undergoing DNA fragmentation after overnight in vitro culture. These observations may be important for the understanding and for the direct ex vivo quantitation of HIV-triggered lymphocyte destruction.


2001 ◽  
Vol 75 (12) ◽  
pp. 5646-5655 ◽  
Author(s):  
Bijan Etemad-Moghadam ◽  
Daniela Rhone ◽  
Tavis Steenbeke ◽  
Ying Sun ◽  
Judith Manola ◽  
...  

ABSTRACT The mechanism of the progressive loss of CD4+ T lymphocytes, which underlies the development of AIDS in human immunodeficiency virus (HIV-1)-infected individuals, is unknown. Animal models, such as the infection of Old World monkeys by simian-human immunodeficiency virus (SHIV) chimerae, can assist studies of HIV-1 pathogenesis. Serial in vivo passage of the nonpathogenic SHIV-89.6 generated a virus, SHIV-89.6P, that causes rapid depletion of CD4+ T lymphocytes and AIDS-like illness in monkeys. SHIV-KB9, a molecularly cloned virus derived from SHIV-89.6P, also caused CD4+ T-cell decline and AIDS in inoculated monkeys. It has been demonstrated that changes in the envelope glycoproteins of SHIV-89.6 and SHIV-KB9 determine the degree of CD4+ T-cell loss that accompanies a given level of virus replication in the host animals (G. B. Karlsson et. al., J. Exp. Med. 188:1159–1171, 1998). The envelope glycoproteins of the pathogenic SHIV mediated membrane fusion more efficiently than those of the parental, nonpathogenic virus. Here we show that the minimal envelope glycoprotein region that specifies this increase in membrane-fusing capacity is sufficient to convert SHIV-89.6 into a virus that causes profound CD4+ T-lymphocyte depletion in monkeys. We also studied two single amino acid changes that decrease the membrane-fusing ability of the SHIV-KB9 envelope glycoproteins by different mechanisms. Each of these changes attenuated the CD4+ T-cell destruction that accompanied a given level of virus replication in SHIV-infected monkeys. Thus, the ability of the HIV-1 envelope glycoproteins to fuse membranes, which has been implicated in the induction of viral cytopathic effects in vitro, contributes to the capacity of the pathogenic SHIV to deplete CD4+ T lymphocytes in vivo.


2004 ◽  
Vol 78 (22) ◽  
pp. 12638-12646 ◽  
Author(s):  
Eli Boritz ◽  
Brent E. Palmer ◽  
Cara C. Wilson

ABSTRACT Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-γ)-producing CD4+ T cells. Among the 20 viremic, treatment-naïve subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-γ-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 62-73 ◽  
Author(s):  
Alessandro Aiuti ◽  
Lucia Turchetto ◽  
Manuela Cota ◽  
Arcadi Cipponi ◽  
Andrea Brambilla ◽  
...  

Human CD34+ hematopoietic progenitor cells obtained from bone marrow (BM), umbilical cord blood (UCB), and mobilized peripheral blood (MPB) were purified and investigated for the expression of the chemokine receptor CXCR4 and its ligand, stromal cell–derived factor-1 (SDF-1). CXCR4 was found present on the cell surface of all CD34+ cells, although it was expressed at lower density on MPB with respect to BM CD34+ cells. Freshly isolated and in vitro–cultured CD34+ cells also coexpressed SDF-1 mRNA, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). Of interest, CD34+/CD38+ committed progenitor cells, unlike primitive CD34+/CD38− cells, expressed SDF-1 mRNA. Supernatants from in vitro–cultured CD34+ cells contained substantial (3 to 8 ng/mL) amounts of SDF-1 by enzyme-linked immunosorbent assay and induced migration of CD34+ cells. Because CD34+ cells express low levels of CD4, the primary receptor of the human immunodeficiency virus (HIV), and CXCR4 is a coreceptor for T-cell tropic (X4) HIV strains, we investigated the susceptibility of CD34+cells to infection by this subset of viruses. Lack of productive infection was almost invariably observed as determined by a conventional RT activity in culture supernatants and by real-time PCR for HIV DNA in CD34+ cells exposed to both laboratory adapted (LAI) and primary (BON) X4 T-cell tropic HIV-1 strain. Soluble gp120 Env (sgp120) from X4 HIV-1 efficiently blocked binding of the anti-CD4 Leu3a monoclonal antibody (MoAb) to either human CD4+ T cells or CD34+ cells. In contrast, sgp120 interfered with an anti-CXCR4 MoAb binding to human T lymphocytes, but not to CD34+ cells. However, CXCR4 on CD34+ cells was downregulated by SDF-1. These results suggest that CXCR4 and its ligand SDF-1 expressed in CD34+ progenitors may play an important role in regulating the local and systemic trafficking of these cells. Moreover, these findings suggest multiple and potentially synergistic mechanisms at the basis of the resistance of CD34+ cells to X4 HIV infection, including their ability to produce SDF-1, and the lack of CXCR4 internalization following gp120 binding to CD4.


Sign in / Sign up

Export Citation Format

Share Document