scholarly journals Envelope Glycoprotein Determinants of Increased Fusogenicity in a Pathogenic Simian-Human Immunodeficiency Virus (SHIV-KB9) Passaged In Vivo

2000 ◽  
Vol 74 (9) ◽  
pp. 4433-4440 ◽  
Author(s):  
Bijan Etemad-Moghadam ◽  
Ying Sun ◽  
Emma K. Nicholson ◽  
Mark Fernandes ◽  
Kwa Liou ◽  
...  

ABSTRACT Changes in the envelope glycoprotein ectodomains of a nonpathogenic simian-human immunodeficiency virus (SHIV-89.6) that was serially passaged in vivo have been shown to be responsible for the increased pathogenicity of the resulting virus, SHIV-KB9 (G. B. Karlsson, et al., J. Exp. Med. 188:1159–1171, 1998). The 12 amino acid changes in the envelope glycoprotein ectodomains resulted in increased chemokine receptor-binding and syncytium-forming abilities. Here we identify the envelope glycoprotein determinants of these properties. A single amino acid change in the gp120 third variable (V3) loop was both necessary and sufficient for the observed increase in the binding of the SHIV-KB9 gp120 glycoprotein to the CCR5 chemokine receptor. The increased syncytium-forming ability of SHIV-KB9 involved, in addition to the V3 loop change, changes in the second conserved (C2) region of gp120 (residue 225) and in the gp41 ectodomain (residues 564 and 567). The C2 and gp41 ectodomain changes influenced syncytium formation in a cooperative manner. Changes in the V1/V2 gp120 variable loops exerted a negative effect on syncytium formation and chemokine receptor binding, supporting a previously described role of these changes in immune evasion. The definition of the passage-associated changes that determine the efficiency of chemokine receptor binding and membrane fusogenicity will allow evaluation of the contribution of these properties to in vivo CD4-positive lymphocyte depletion.

2010 ◽  
Vol 84 (7) ◽  
pp. 3147-3161 ◽  
Author(s):  
Shi-Hua Xiang ◽  
Andrés Finzi ◽  
Beatriz Pacheco ◽  
Kevin Alexander ◽  
Wen Yuan ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 β2, β19, β20, and β21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.


1998 ◽  
Vol 72 (6) ◽  
pp. 4694-4703 ◽  
Author(s):  
Nancy Sullivan ◽  
Ying Sun ◽  
Quentin Sattentau ◽  
Markus Thali ◽  
Dona Wu ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.


1997 ◽  
Vol 41 (12) ◽  
pp. 2616-2620 ◽  
Author(s):  
K De Vreese ◽  
I Van Nerum ◽  
K Vermeire ◽  
J Anné ◽  
E De Clercq

The bicyclams are a new class of anti-human immunodeficiency virus (anti-HIV) compounds targeted at viral entry. From marker rescue experiments, it appears that the envelope gp120 glycoprotein plays an important role in the anti-HIV activity of the bicyclams. Bicyclam-resistant strains contain a number of amino acid changes scattered over the V2 to V5 region of gp120. Experiments aimed at estimating the relative importance of particular amino acid changes with regard to the overall resistance pattern are described. The sequences of some partially bicyclam-resistant virus strains, obtained during the resistance development process, were analyzed, and the corresponding 50% effective concentrations were determined. Selected mutations observed in bicyclam-resistant strains were introduced in the wild-type background by site-directed mutagenesis. In addition, some amino acids were back-mutated to their wild-type counterparts in an otherwise JM3100-resistant strain. The sensitivities of these mutant viruses to bicyclams were determined. Construction of chimeric viruses, carrying the V3 loop of JM3100-resistant virus in a wild-type HIV type 1 HXB2 background, enabled us to investigate the importance of the mutations in the V3 loop of JM3100-resistant virus. From the results described in the report, it can be concluded that single amino acid substitutions do not influence the observed resistance to JM3100. Also, the mutations in the V3 loop are not sufficient to engender even a partially resistant phenotype. We postulate that the overall conformation of gp120 determines the degree of sensitivity or resistance of HIV strains to bicyclams.


2009 ◽  
Vol 83 (21) ◽  
pp. 10941-10950 ◽  
Author(s):  
Avi-Hai Hovav ◽  
Michael Santosuosso ◽  
Maytal Bivas-Benita ◽  
Andre Plair ◽  
Alex Cheng ◽  
...  

ABSTRACT In order to increase the immune breadth of human immunodeficiency virus (HIV) vaccines, strategies such as immunization with several HIV antigens or centralized immunogens have been examined. HIV-1 gp120 protein is a major immunogen of HIV and has been routinely considered for inclusion in both present and future AIDS vaccines. However, recent studies proposed that gp120 interferes with the generation of immune response to codelivered antigens. Here, we investigate whether coimmunization with plasmid-encoded gp120 alters the immune response to other coadministered plasmid encoded antigens such as luciferase or ovalbumin in a mouse model. We found that the presence of gp120 leads to a significant reduction in the expression level of the codelivered antigen in vivo. Antigen presentation by antigen-presenting cells was also reduced and resulted in the induction of weak antigen-specific cellular and humoral immune responses. Importantly, gp120-mediated immune interference was observed after administration of the plasmids at the same or at distinct locations. To characterize the region in gp120 mediating these effects, we used plasmid constructs encoding gp120 that lacks the V1V2 loops (ΔV1V2) or the V3 loop (ΔV3). After immunization, the ΔV1V2, but not the ΔV3 construct, was able to reduce antigen expression, antigen presentation, and subsequently the immunogenicity of the codelivered antigen. The V3 loop dependence of this phenomenon seems to be limited to V3 loops known to interact with the CXCR4 molecule but not with CCR5. Our study presents a novel mechanism by which HIV-1 gp120 interferes with the immune response against coadministered antigen in a polyvalent vaccine preparation.


2009 ◽  
Vol 83 (19) ◽  
pp. 9875-9889 ◽  
Author(s):  
Elodie Beaumont ◽  
Daniela Vendrame ◽  
Bernard Verrier ◽  
Emmanuelle Roch ◽  
François Biron ◽  
...  

ABSTRACT Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.


2000 ◽  
Vol 74 (2) ◽  
pp. 693-701 ◽  
Author(s):  
Joseph T. C. Shieh ◽  
Julio Martín ◽  
Gordon Baltuch ◽  
Michael H. Malim ◽  
Francisco González-Scarano

ABSTRACT Microglia are the main reservoir for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS), and multinucleated giant cells, the result of fusion of HIV-1-infected microglia and brain macrophages, are the neuropathologic hallmark of HIV dementia. One potential explanation for the formation of syncytia is viral adaptation for these CD4+ CNS cells. HIV-1BORI-15, a virus adapted to growth in microglia by sequential passage in vitro, mediates high levels of fusion and replicates more efficiently in microglia and monocyte-derived-macrophages than its unpassaged parent (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. Gonzalez-Scarano, J. Virol. 70:7654–7662, 1996). Since the interaction between the viral envelope glycoprotein and CD4 and the chemokine receptor mediates fusion and plays a key role in tropism, we have analyzed the HIV-1BORI-15 env as a fusogen and in recombinant and pseudotyped viruses. Its syncytium-forming phenotype is not the result of a switch in coreceptor use but rather of the HIV-1BORI-15envelope-mediated fusion of CD4+CCR5+ cells with greater efficiency than that of its parental strain, either by itself or in the context of a recombinant virus. Genetic analysis indicated that the syncytium-forming phenotype was due to four discrete amino acid differences in V1/V2, with a single-amino-acid change between the parent and the adapted virus (E153G) responsible for the majority of the effect. Additionally, HIV-1BORI-15 env-pseudotyped viruses were less sensitive to decreases in the levels of CD4 on transfected 293T cells, leading to the hypothesis that the differences in V1/V2 alter the interaction between this envelope and CD4 or CCR5, or both. In sum, the characterization of the envelope of HIV-1BORI-15, a highly fusogenic glycoprotein with genetic determinants in V1/V2, may lead to a better understanding of the relationship between HIV replication and syncytium formation in the CNS and of the importance of this region of gp120 in the interaction with CD4 and CCR5.


2000 ◽  
Vol 74 (9) ◽  
pp. 4335-4350 ◽  
Author(s):  
Yumi Yamaguchi-Kabata ◽  
Takashi Gojobori

ABSTRACT To elucidate the evolutionary mechanisms of the human immunodeficiency virus type 1 gp120 envelope glycoprotein at the single-site level, the degree of amino acid variation and the numbers of synonymous and nonsynonymous substitutions were examined in 186 nucleotide sequences for gp120 (subtype B). Analyses of amino acid variabilities showed that the level of variability was very different from site to site in both conserved (C1 to C5) and variable (V1 to V5) regions previously assigned. To examine the relative importance of positive and negative selection for each amino acid position, the numbers of synonymous and nonsynonymous substitutions that occurred at each codon position were estimated by taking phylogenetic relationships into account. Among the 414 codon positions examined, we identified 33 positions where nonsynonymous substitutions were significantly predominant. These positions where positive selection may be operating, which we call putative positive selection (PS) sites, were found not only in the variable loops but also in the conserved regions (C1 to C4). In particular, we found seven PS sites at the surface positions of the α-helix (positions 335 to 347 in the C3 region) in the opposite face for CD4 binding. Furthermore, two PS sites in the C2 region and four PS sites in the C4 region were detected in the same face of the protein. The PS sites found in the C2, C3, and C4 regions were separated in the amino acid sequence but close together in the three-dimensional structure. This observation suggests the existence of discontinuous epitopes in the protein's surface including this α-helix, although the antigenicity of this area has not been reported yet.


Sign in / Sign up

Export Citation Format

Share Document