scholarly journals Identification of the Neoplastically Transformed Cells in Marek's Disease Herpesvirus-Induced Lymphomas: Recognition by the Monoclonal Antibody AV37

2002 ◽  
Vol 76 (14) ◽  
pp. 7276-7292 ◽  
Author(s):  
Shane C. Burgess ◽  
T. Fred Davison

ABSTRACT Understanding the interactions between herpesviruses and their host cells and also the interactions between neoplastically transformed cells and the host immune system is fundamental to understanding the mechanisms of herpesvirus oncology. However, this has been difficult as no animal models of herpesvirus-induced oncogenesis in the natural host exist in which neoplastically transformed cells are also definitively identified and may be studied in vivo. Marek's disease (MD) herpesvirus (MDV) of poultry, although a recognized natural oncogenic virus causing T-cell lymphomas, is no exception. In this work, we identify for the first time the neoplastically transformed cells in MD as the CD4+ major histocompatibility complex (MHC) class Ihi, MHC class IIhi, interleukin-2 receptor α-chain-positive, CD28lo/−, phosphoprotein 38-negative (pp38−), glycoprotein B-negative (gB−), αβ T-cell-receptor-positive (TCR+) cells which uniquely overexpress a novel host-encoded extracellular antigen that is also expressed by MDV-transformed cell lines and recognized by the monoclonal antibody (MAb) AV37. Normal uninfected leukocytes and MD lymphoma cells were isolated directly ex vivo and examined by flow cytometry with MAb recognizing AV37, known leukocyte antigens, and MDV antigens pp38 and gB. CD28 mRNA was examined by PCR. Cell cycle distribution and in vitro survival were compared for each lymphoma cell population. We demonstrate for the first time that the antigen recognized by AV37 is expressed at very low levels by small minorities of uninfected leukocytes, whereas particular MD lymphoma cells uniquely express extremely high levels of the AV37 antigen; the AV37hi MD lymphoma cells fulfill the accepted criteria for neoplastic transformation in vivo (protection from cell death despite hyperproliferation, presence in all MD lymphomas, and not supportive of MDV production); the lymphoma environment is essential for AV37+ MD lymphoma cell survival; pp38 is an antigen expressed during MDV-productive infection and is not expressed by neoplastically transformed cells in vivo; AV37+ MD lymphoma cells have the putative immune evasion mechanism of CD28 down-regulation; AV37hi peripheral blood leukocytes appear early after MDV infection in both MD-resistant and -susceptible chickens; and analysis of TCR variable β chain gene family expression suggests that MD lymphomas have polyclonal origins. Identification of the neoplastically transformed cells in MD facilitates a detailed understanding of MD pathogenesis and also improves the utility of MD as a general model for herpesvirus oncology.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 374-374 ◽  
Author(s):  
Hua-Xin Gao ◽  
Shawn Anderson ◽  
Cigall Kadoch ◽  
Mekhala Maiti ◽  
Lingjing Chen ◽  
...  

Abstract Background CNS manifestations of aggressive non-Hodgkin Lymphoma are associated with serious morbidity and adverse prognosis. Primary CNS lymphomas (PCNSL) exhibit a dichomatous growth pattern, either dissemination within brain, typical at presentation, and/or leptomeningeal spread, common at relapse. Elucidation of the mechanistic basis of CNS lymphoma progression as well as drug resistance requires preclinical models that recapitulate their pathogenesis. Methods We developed a novel method to derive cell lines of CNS lymphoma that recapitulate disease phenotypes upon intracranial implantation into mice. We are applying genomics, in vitrochemotaxis, preclinical testing of targeted therapies and neuroimaging to evaluate mechanisms of invasion and resistance. Results We developed 7 CNS lymphoma cell lines; 6 DLBCL (all ABC-type), 1 Burkitt; 5 from secondary CNS lymphoma (SCNSL), and 2 from PCNSL, of which 1 was treatment naïve. Intracranial implantation of lymphoma cells from these tumours within NSG mice provides a reproducible model to dissect the pathogenesis of CNS lymphomas. PCNSL specimens were 10X more efficient in CNS dissemination than SCNSL. High resolution array-CGH demonstrated that intracranial tumour growth was associated with retention of genomic aberrations of the original tumours (e.g. del 6q, gains on 12, etc) and that these were maintained with serial passage in vivo. CNS-infiltrative lymphomas expressed significantly increased levels of MMP-7 and RGS-13 transcripts compared to lymphomas that did not infiltrate brain, while osteopontin and cathepsin D expression by lymphoma cells did not correlate with CNS invasion. Targeted shRNA-mediated knockdown of RGS-13 was performed using lentiviral infection and resulted in significant delay of CNS lymphoma growth in vivo in a xenograft model but had no effect on lymphoma proliferation in culture. Therapeutic response to lenalidomide, minus and plus rituximab, was recapitulated in RAG-/- mice, despite deficient T-cell function and correlated with baseline relative cereblon expression, as quantified using a highly specific immunohistochemical assay. The emergence of resistance to lenalidomide in human CNS lymphoma xenografts also correlated with loss of cereblon protein expression, supporting a role for cereblon in the efficacy of lenalidomide in CNS lymphomas. Notably, significant cereblon protein expression by lymphoma cells was detected by immunohistochemistry in 12/22 diagnostic specimens of aggressive CNS lymphoma. Metabolic imaging of model CNS lymphomas using magnetic resonance spectroscopy demonstrated significant intratumoural lactate production in the microenvironment, detectable before evidence of aberrant T2 signal and reduced diffusion. Lenalidomide reduced tumour expression of lactate dehydrogenase and lactate, as well as RGS-13, consistent with anti-proliferative as well as anti-invasive effects. Conclusions To the best of our knowledge we have developed the first panel of patient-derived CNS lymphoma cell lines. We have used these to generate intracranial xenografts that provide a highly reproducible model system to dissect key elements of CNS lymphoma pathogenesis, leading to the elucidation of mechanisms of CNS lymphoma growth and invasion as well as resistance. Our results support a direct, T-cell independent effect of lenalidomide on CNS lymphoma growth and invasion which may be cereblon-dependent. Additional studies are needed to define the role of cereblon as a biomarker and mediator of lenalidomide efficacy in CNS lymphomas. In addition, we are using these models to identify novel genomic and metabolic aberrations predictive of early resistance to lenalidomide and other targeted therapies. Supported by the Lymphoma Research Foundation, Leukemia and Lymphoma Society, and by NIH R01CA139-83-01A1. Disclosures: Heise: Celgene: Employment, Equity Ownership. Rubenstein:Celgene: Research Funding; Genentech: Research Funding. Off Label Use: use of lenalidomide in CNS lymphoma.


2018 ◽  
Author(s):  
Julie G. Burel ◽  
Mikhail Pomaznoy ◽  
Cecilia S. Lindestam Arlehamn ◽  
Daniela Weiskopf ◽  
Ricardo da Silva Antunes ◽  
...  

AbstractOur results highlight for the first time that a significant proportion of cell doublets in flow cytometry, previously believed to be the result of technical artefacts and thus ignored in data acquisition and analysis, are the result of true biological interaction between immune cells. In particular, we show that cell:cell doublets pairing a T cell and a monocyte can be directly isolated from human blood, and high resolution microscopy shows polarized distribution of LFA1/ICAM1 in many doublets, suggesting in vivo formation. Intriguingly, T cell:monocyte complex frequency and phenotype fluctuate with the onset of immune perturbations such as infection or immunization, reflecting expected polarization of immune responses. Overall these data suggest that cell doublets reflecting T cell-monocyte in vivo immune interactions can be detected in human blood and that the common approach in flow cytometry to avoid studying cell:cell complexes should be revisited.


1977 ◽  
Vol 5 (1) ◽  
pp. 535-552 ◽  
Author(s):  
Tom L. Fredericksen ◽  
Bryan M. Longenecker ◽  
Feldzgeritta Pazderka ◽  
Douglas G. Gilmour ◽  
Royal F. Ruth

Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2938-2946 ◽  
Author(s):  
K Dunussi-Joannopoulos ◽  
HJ Weinstein ◽  
PW Nickerson ◽  
TB Strom ◽  
SJ Burakoff ◽  
...  

Recent studies have shown that tumor cells genetically modified by transduction of B7–1, a natural ligand for the T-cell costimulatory molecules CD28 and CTLA-4, are rejected in syngeneic hosts. In these reports, transformed cell lines and drug-selected cells have been used for vaccinations. To determine the effectiveness of B7–1-transduced primary acute myelogenous leukemia (AML) cells on the induction of antitumor immunity, we have studied a murine AML model in which primary AML cells were retrovirally transduced with the murine B7–1 cDNA. A defective retroviral producer clone expressing B7–1 and secreting a high titer of virus was used for infection of AML cells. Unselected transduced AML cells, expressing a high level of B7–1, were used for in vivo vaccinations. Our results show that one intravenous (IV) injection of irradiated B7–1-positive (B7–1+) AML cells can provide long-lasting (5 to 6 months) systemic immunity against subsequent challenge with wild-type AML cells. Furthermore, one exposure to irradiated B7–1+ AML cells results in rejection of leukemia by leukemic mice when the vaccination occurs in the early stages of the disease. The antileukemia immunity is CD8+ T-cell-dependent and B7/CD28-mediated, since in vivo treatment of mice with anti-CD8 monoclonal antibody or CTLA-4 Ig leads to abrogation of the specific antileukemia immune response. These results emphasize that B7–1 vaccines may have therapeutic usefulness for patients with AML.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Yaoyao Zhang ◽  
Na Tang ◽  
Jun Luo ◽  
Man Teng ◽  
Katy Moffat ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs with profound regulatory roles in many areas of biology, including cancer. MicroRNA 155 (miR-155), one of the extensively studied multifunctional miRNAs, is important in several human malignancies such as diffuse large B cell lymphoma and chronic lymphocytic leukemia. Moreover, miR-155 orthologs KSHV-miR-K12-11 and MDV-miR-M4, encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV) and Marek’s disease virus (MDV), respectively, are also involved in oncogenesis. In MDV-induced T-cell lymphomas and in lymphoblastoid cell lines derived from them, MDV-miR-M4 is highly expressed. Using excellent disease models of infection in natural avian hosts, we showed previously that MDV-miR-M4 is critical for the induction of T-cell lymphomas as mutant viruses with precise deletions were significantly compromised in their oncogenicity. However, those studies did not elucidate whether continued expression of MDV-miR-M4 is essential for maintaining the transformed phenotype of tumor cells. Here using an in situ CRISPR/Cas9 editing approach, we deleted MDV-miR-M4 from the MDV-induced lymphoma-derived lymphoblastoid cell line MDCC-HP8. Precise deletion of MDV-miR-M4 was confirmed by PCR, sequencing, quantitative reverse transcription-PCR (qRT-PCR), and functional analysis. Continued proliferation of the MDV-miR-M4-deleted cell lines demonstrated that MDV-miR-M4 expression is not essential for maintaining the transformed phenotype, despite its initial critical role in the induction of lymphomas. Ability to examine the direct role of oncogenic miRNAs in situ in tumor cell lines is valuable in delineating distinct determinants and pathways associated with the induction or maintenance of transformation in cancer cells and will also contribute significantly to gaining further insights into the biology of oncogenic herpesviruses. IMPORTANCE Marek’s disease virus (MDV) is an alphaherpesvirus associated with Marek’s disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype.


Sign in / Sign up

Export Citation Format

Share Document