scholarly journals Establishment of B-Cell Lymphoma Cell Lines Persistently Infected with Hepatitis C Virus In Vivo and In Vitro: the Apoptotic Effects of Virus Infection

2003 ◽  
Vol 77 (3) ◽  
pp. 2134-2146 ◽  
Author(s):  
Vicky M.-H. Sung ◽  
Shigetaka Shimodaira ◽  
Alison L. Doughty ◽  
Gaston R. Picchio ◽  
Huong Can ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Studies of HCV replication and pathogenesis have so far been hampered by the lack of an efficient tissue culture system for propagating HCV in vitro. Although HCV is primarily a hepatotropic virus, an increasing body of evidence suggests that HCV also replicates in extrahepatic tissues in natural infection. In this study, we established a B-cell line (SB) from an HCV-infected non-Hodgkin's B-cell lymphoma. HCV RNA and proteins were detectable by RNase protection assay and immunoblotting. The cell line continuously produces infectious HCV virions in culture. The virus particles produced from the culture had a buoyant density of 1.13 to 1.15 g/ml in sucrose and could infect primary human hepatocytes, peripheral blood mononuclear cells (PBMCs), and an established B-cell line (Raji cells) in vitro. The virus from SB cells belongs to genotype 2b. Single-stranded conformational polymorphism and sequence analysis of the viral RNA quasispecies indicated that the virus present in SB cells most likely originated from the patient's spleen and had an HCV RNA quasispecies pattern distinct from that in the serum. The virus production from the infected primary hepatocytes showed cyclic variations. In addition, we have succeeded in establishing several Epstein-Barr virus-immortalized B-cell lines from PBMCs of HCV-positive patients. Two of these cell lines are positive for HCV RNA as detected by reverse transcriptase PCR and for the nonstructural protein NS3 by immunofluorescence staining. These observations unequivocally establish that HCV infects B cells in vivo and in vitro. HCV-infected cell lines show significantly enhanced apoptosis. These B-cell lines provide a reproducible cell culture system for studying the complete replication cycle and biology of HCV infections.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4000-4000
Author(s):  
Joseph M. Gozgit ◽  
Youngchul Song ◽  
Scott Wardwell ◽  
Sara Nadworny ◽  
Yaoyu Ning ◽  
...  

Abstract Introduction Diffuse large B-cell lymphoma (DLBCL), the most common type of Non-Hodgkin lymphoma (NHL), comprises 2 major molecular subtypes: germinal center B-cell-like (GCB) and activated B cell-like (ABC). Although standard therapy (rituximab+ chemotherapy [R-CHOP]) is effective in most patients (pts), a significant proportion do not achieve durable remissions. Treatment of relapsed and refractory DLBCL pts with targeted therapy, such as the BTK inhibitor ibrutinib, has shown some promise; however, responses are mostly restricted to the ABC subtype. Treatment options for pts with relapsed/refractory GCB, outside of stem cell transplantation, are especially limited. Ponatinib is a potent pan-BCR-ABL inhibitor approved for pts with refractory or T315I+ chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia. Initial characterization of the in vitro kinase activity of ponatinib demonstrated substantial activity against a number of additional oncogenic kinases, including KIT, RET, FLT3, and members of the FGFR, PDGFR, and SRC families. To obtain a broad, unbiased, assessment of the anti-proliferative effects of ponatinib, we screened a panel of 246 human tumor cell lines. Based on the novel finding that a GCB-DLBCL cell line was amongst those inhibited most potently by ponatinib, we conducted studies to further characterize the activity of ponatinib in NHL, and GCB-DLBCL in particular. Results A broad cell-based screen identified a small subset of cell lines (18/246; 7%) whose growth was potently inhibited by ponatinib (GI50<42 nM). A majority of these lines express activated variants of previously validated targets of ponatinib: ABL (N=5, GI50 <0.3 nM), FLT3 (N=1, GI50 1 nM), FGFR2 (N=2, GI50s 5-29 nM), and PDGFRα (N=1, 14 nM). In addition, ponatinib potently inhibited growth of the GCB-DLBCL cell line DoHH2 (GI50 8 nM). The cellular activity of ponatinib was next examined in a larger set of NHL cell lines enriched for the GCB subtype (Table 1). Ponatinib only exhibited modest activity (GI50 46-119 nM) against 2 mantle cell lymphoma (MCL) lines, but potently inhibited growth (GI50≤10 nM) of the one Burkitt's lymphoma (BL) line tested (Daudi). Most notably, ponatinib also potently inhibited growth of 5/9 GCB cell lines. In contrast, none of the GCB lines showed sensitivity to ibrutinib (GI50s >100 nM). Finally, we evaluated the in vivo potency of ponatinib in mice implanted with the GCB cell lines exhibiting the greatest (SU-DHL-4) and weakest (SU-DHL-10) in vitro sensitivity to ponatinib, using dosing regimens previously shown to be active in BCR-ABL models predictive of efficacy in patients. Once-daily oral administration of ponatinib resulted in a dose-dependent inhibition of SU-DHL-4 tumor growth, with 10 mg/kg inducing 78% tumor regression, and 30 mg/kg rapidly inducing complete regression that was maintained in all mice for an additional 2 weeks after ponatinib dosing was stopped. In contrast, ponatinib had much more modest effects on SU-DHL-10 tumors with 30 mg/kg only inhibiting tumor growth by 39%. Conclusion Ponatinib has promising in vitro and in vivo activity against a substantial subset of GCB-DLBCL models tested, with potency similar to that observed in BCR-ABL models. These results provide support for evaluating ponatinib in GCB-DLBCL pts who have failed prior therapy. Studies to further characterize the molecular basis for the activity of ponatinib in NHL are ongoing. Table 1. In vitro drug activity in 12 NHL cell lines Cell line Type Ponatinib GI50 (nM) Ibrutinib GI50 (nM) SU-DHL-4 GCB DLBCL 1.3 313 DoHH2 GCB DLBCL 2.5 114 Pfeiffer GCB DLBCL 6 2,074 SU-DHL-6 GCB DLBCL 9.8 1,041 WSU-NHL GCB DLBCL 10 1,672 Farage GCB DLBCL 51 1,409 U-2932 GCB DLBCL 79 >10,000 RL GCB DLBCL 212 6,939 SU-DHL-10 GCB DLBCL 238 2,827 Daudi BL 2.9 4,319 Mino MCL 46 >10,000 Jeko-1 MCL 119 4,781 GI50: the concentration that causes 50% growth inhibition. Disclosures Gozgit: ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Song:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Wardwell:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Nadworny:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Ning:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed). Rivera:ARIAD Pharmaceuticals Inc.: Employment, Other: Full-time Employee & Shareholder (self-managed).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 704-704
Author(s):  
Marco Ruella ◽  
Saad S Kenderian ◽  
Olga Shestova ◽  
Joseph A. Fraietta ◽  
Sohail Qayyum ◽  
...  

Abstract Introduction: The bruton tyrosine kinase (BTK) inhibitor ibrutinib demonstrates considerable activity in mantle cell lymphoma (MCL). However, approximately 30% of patients do not respond to this treatment and the therapy invariably leads to drug resistance with a median response of 17.5 months. Infusion of autologous T cells transduced with chimeric antigen receptors (CAR) against the B-cell specific CD19 antigen (CART19) leads to dramatic clinical responses in the majority of patients with acute lymphoblastic leukemia and the activity in B cell lymphoma is currently being evaluated in clinical trials. Bulky disease, as sometimes seen in MCL, may impair T cell infiltration. The features of ibrutinib that make it an interesting addition to CART19 include its efficacy in reducing tumor masses and its ability to mobilize neoplastic B cells into the peripheral blood, thereby potentially exposing them to the killing activity of CART19. Therefore, we sought to investigate the combination of the two novel targeted therapies, ibrutinib and CART19 in MCL. Results: In vitro studies with established MCL cell lines and with a novel cell line (MCL-RL) showed a range of responses to ibrutinib with an IC50 ranging from 10 nM to 10 µM; MCL-RL was the most sensitive cell line evaluated with an IC50 of 10nM, similar to primary MCL. Both ibrutinib-sensitive and ibrutinib-resistant cell lines strongly activated CART19 in an antigen-specific manner as detected by CD107a degranulation, cytokine production and CFSE proliferation assays. Importantly, in vitro assays with MCL cell lines co-cultured with increasing doses of CART19 (E:T= 2:1, 1:1, 0.5:1, 0.25:1) combined with increasing concentrations of ibrutinib (0, 10, 100, 1000 nM) demonstrated strong additive tumor killing (Figure 1). Notably, supra-therapeutic doses of Ibrutinib (>/=1 uM) impaired cytokine production and T cell proliferation in vitro. In order to test this combination in vivo we established a novel MCL model, injecting i.v. luciferase-positive MCL-RL cells into NSG mice. This resulted in 100% MCL engraftment in liver and spleen, with eventual dissemination into lymph nodes and bone marrow. Treatment with three different doses of CART19 (0.5, 1 and 2 million cells/mouse) led to a dose dependent anti-tumor effect. A similar dose response to CART19 was also observed in the ibrutinib-resistant Jeko-1 cell line. We also treated MCL-RL xenografts with different doses (0, 25 and 125 mg/Kg/day) of ibrutinib, with a median overall survival respectively of 70, 81 and 100 days (p<0.001). Importantly, a direct in vivo comparison of the highest ibrutinib dose (125 mg/kg) and CART19 showed a significantly improved tumor control for mice treated with CART19. However, treatment with either CART19 or ibrutinib as single agents invariably led to late relapse. Therefore we sought to treat MCL-RL xenografts with the combination of CART19 and ibrutinib and compare it to the single agent activity. The combination resulted in significant improvement in tumor control compared to mice treated with the single agents with 80% of mice achieving long-term disease-free survival ( p=0.007 at day 110, representative mice shown in Figure 2A). Intriguingly, we found that mice treated with ibrutinib had higher numbers of circulating CART19 cells (Figure 2B). Conclusions: Combining CART19 with ibrutinib represents a rational way to incorporate two of the most recent therapies in MCL. Our findings pave the way to a two-pronged therapeutic strategy in patients with MCL and other types of B-cell lymphoma. Figure 1. Figure 1. Figure 2. Figure 2. Disclosures Ruella: Novartis: Patents & Royalties, Research Funding. Kenderian:Novartis: Patents & Royalties, Research Funding. Maus:Novartis: Consultancy, Patents & Royalties, Research Funding. Milone:Novartis: Patents & Royalties, Research Funding. Lacey:Novartis: Patents & Royalties, Research Funding. Mato:Genentech: Consultancy; Pronai Pharmaceuticals: Research Funding; Celgene Corporation: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding; Gilead: Consultancy, Research Funding; TG Therapeutics: Research Funding; AbbVie: Consultancy, Research Funding; Janssen: Consultancy. Schuster:Genentech: Consultancy; Pharmacyclics: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Hoffman-LaRoche: Research Funding; Janssen: Research Funding; Gilead: Research Funding; Nordic Nanovector: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding. Kalos:Novartis: Patents & Royalties, Research Funding. June:Novartis: Research Funding; University of Pennsylvania: Patents & Royalties: financial interests due to intellectual property and patents in the field of cell and gene therapy. Conflicts of interest are managed in accordance with University of Pennsylvania policy and oversight. Gill:Novartis: Patents & Royalties, Research Funding. Wasik:Janseen and Novartis: Research Funding.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2417-2417
Author(s):  
Olga Ritz ◽  
Jochen K Lennerz ◽  
Karolin Rommel ◽  
Karola Dorsch ◽  
Elena Kelsch ◽  
...  

Abstract Abstract 2417 Primary mediastinal B-cell lymphoma (PMBL) is a subtype of diffuse large B-cell lymphoma (DLBCL) that affects predominantly young women (Swerdlow et al. 2008). Despite improvements due to addition of rituximab, which has become state of the art treatment, 20% of PMBL patients succumb to disease progression or relapse. Notably, here are currently no registered trials that are actively recruiting PMBL-patients and a better understanding of the underlying pathobiology may identify novel therapeutic targets and provide an alternative to dose escalation (Steidl and Gascoyne 2011). BCL6 is a key germinal center B-cell transcription factor that suppresses genes involved in lymphocyte activation, differentiation, cell cycle arrest and DNA damage response gene. BCL6 is aberrantly expressed in certain DLBCL subgroups and BCL6 overexpression is sufficient for lymphomagenesis in mice (Cattoretti et al. 2005). In cellular- and murine DLBCL models, targeting of BCL6 via retroinverted BCL6 peptid inhibitor (RI-BPI) appears effective (Polo et al. 2004; Cerchietti et al. 2010). In conjunction with the relatively restricted expression pattern of BCL6, these data collectively suggest BCL6 as a candidate for targeted therapy in BCL6-positive lymphomas. Despite substantial work on BCL6 in lymphomas, the function of BCL6 in PMBL is unknown. To address the BCL6 function in PMBL, we performed BCL6 depletion by siRNA in all three available PMBL cell lines: K1106, U-2940 and MedB-1. We found that BCL6 acts pro-proliferative and anti-apoptotic; however, PMBL models were only partially dependent on and not addicted to BCL6. Given that BCL6 expression in all PMBL cell lines is variable with a notable fraction of BCL6-negative cells, we argued that increasing the fraction of BCL6-positive cells might increase the level of BCL6-dependence. Since IL-4/STAT6 signaling upregulates BCL6 in mouse lymphocytes (Schroder et al. 2002), we treated PMBL cell lines with IL-4 (or IL-13) and, as expected, observed increased phosphorylated (p)STAT6 levels. Surprisingly, the pSTAT6 increase was not associated with higher – but with drastically lower BCL6 protein levels. Moreover, in untreated cells, co-localization studies for pSTAT6- and BCL6 demonstrated staining in mutually exclusive subsets of cells (Figure 1A), suggesting negative interaction between BCL6 and pSTAT6. Other STAT family members were already shown to participate in the transcriptional regulation of BCL6. Thus, we examined binding of STAT6 to the proximal promoter of BCL6 in all PMBL cell lines using shift assay and chromatin immunoprecipitation. We found that STAT6 can bind all five GAS binding sites within the BCL6 promoter in vitro and in all PMBL cell lines STAT6 was bound to proximal BCL6 promoter in vivo. Furthermore, transient STAT6 depletion by siRNA and/or ectopic expression of constitutively active STAT6 confirms that pSTAT6 is sufficient for transcriptional repression of BCL6. Co-localization studies in primary patient samples demonstrated mutually exclusive BCL6/pSTAT6 distribution as a visual hallmark of the repression mechanism (Figure 1B, C). Thus, our data demonstrate for the first time that constitutively active STAT6 transcriptionally represses BCL6 in PMBL. In conjunction with functional data, the delineated repression mechanism may prevent addiction to one single oncogenic pathway (i.e. BCL6) in PMBL. Figure 1. Mutually exclusive distribution of BCL6 and pSTAT6 in PMBL Figure 1. Mutually exclusive distribution of BCL6 and pSTAT6 in PMBL Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to &gt;10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated &gt; 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting &gt; 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 711-711
Author(s):  
Anagh Anant Sahasrabuddhe ◽  
Xiaofei Chen ◽  
Kaiyu Ma ◽  
Rui Wu ◽  
Richa Kapoor ◽  
...  

Abstract Introduction: Diffuse large B cell lymphoma (DLBCL) is the most common form of malignant lymphoma and may arise de novo, or through transformation from a pre-existing low-grade B cell lymphoma such as follicular lymphoma (FL). However, the post-translational mechanisms and deregulated pathways underlying the pathogenesis of disease evolution are not fully understood. Methods: We employed integrated functional and structural genomics and mass spectrometry (MS)-driven proteomics which implicated a possible novel tumor suppressor role for a conserved E3 ubiquitin ligase FBXO45 in DLBCL pathogenesis. We generated conditional knockout mice targeting loss of Fbxo45 in germinal center (GC) B-cells using the Cg1-Cre-loxP system and an assortment of CRISPR-mediated knockouts of FBXO45 in B cell lymphoma cells (FL518, BJAB, U2932). We engineered B cell lines (BJAB, U2932) to inducibly express FLAG-tagged FBXO45 to identify candidate substrates of FBXO45 using liquid chromatography-tandem MS. In vitro biochemical and in vivo studies using a variety of genetically-modified lines in xenograft studies in immunodeficient mice were performed to validate observations from proteogenomic studies. Whole genome sequencing (WGS) and genomic copy number studies were interrogated to investigate structural alterations targeting FBXO45 in primary human lymphoma samples. Results: Conditional targeting of Fbxo45 in GCB-cells in transgenic mice resulted in abnormal germinal center formation with increased number and size of germinal centers. Strikingly, targeted deletion of Fbxo45 in GCB-cells resulted in spontaneous B cell lymphomas with (22/22);100%) penetrance and none of the wild-type (WT) littermates (0/20; 0%) developed lymphoma at 24 months. Macroscopic examination revealed large tumor masses, splenomegaly, and lymphadenopathy at different anatomic locations including ileocecal junction, mesenteric, retroperitoneal and cervical lymph nodes and thymus. Next generation sequencing of immunoglobulin heavy chain genes revealed monoclonal or oligoclonal B cell populations. Using proteomic analysis of affinity-purified FBXO45-immunocomplexes and differential whole proteome analysis from GCB-cells of Fbxo45 wt/wt vs Fbxo45 fl/fl mice, we discovered that FBXO45 targets the RHO guanine exchange factor GEF-H1 for ubiquitin-mediated proteasomal degradation. FBXO45 exclusively interacts with GEF H1 among 8 F-box proteins investigated and silencing of FBXO45 using three independent shRNA and CRISPR-Cas9-mediated knockouts in B-cell lymphoma cell lines promotes RHOA and MAPK activation, B cell growth and enhances proliferation. GEF-H1 is stabilized by FBXO45 depletion and GEF-H1 ubiquitination by FBXO45 requires phosphorylation of GEF-H1. Importantly, FBXO45 depletion and expression of a GEF-H1 mutant that is unable to bind FBXO45 results in GEF-H1 stabilization, promotes hyperactivated RHO and MAPK signaling and B-cell oncogenicity in vitro and in vivo. Notably, this phenotype is reverted by co-silencing of GEF-H1. Inducible ectopic expression of FBXO45 triggers accelerated turnover of GEF H1 and decreased RHOA signaling. Genomic analyses revealed recurrent loss targeting FBXO45 in transformed DLBCL (25%), de novo DLBCL (6.6%) and FL (2.3%). In keeping with our observation of prolonged hyperactivation of pERK1/2 consequent to FBXO45 ablation, in vitro and in vivo studies using B-cell lymphoma cell lines and xenografts demonstrated increased sensitivity to pharmacologic blockade with the MAP2K1/2 (ERK1/2) inhibitor Trametinib. Conclusions: Our findings define a novel FBXO45-GEF-H1-MAPK signalling axis, which plays an important role in DLBCL pathogenesis. Our studies carry implications for potential exploitation of this pathway for targeted therapies. Disclosures Siebert: AstraZeneca: Speakers Bureau. Lim: EUSA Pharma: Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4756-4756 ◽  
Author(s):  
Gwyn Bebb ◽  
Huong Muzik ◽  
Sophia Nguyen ◽  
Don Morris ◽  
Douglas A. Stewart

Abstract Introduction Mantle cell lymphoma (MCL), an incurable B cell lymphoma, consistently over expresses bcl-2 despite not carrying the t(14;18). The attenuation of apoptosis by bcl-2 is thought to contribute to the malignant process and increase resistance to some cytotoxic agents. We recently demonstrated that GX15-070, a small molecular inhibitor of the BH3 binding groove of bcl-2, has activity against MCL cell lines in vitro. We set out to assess the effect of GX15-070 alone and in combination with Vincristine on the viability of MCL cells in vitro and in vivo. Methods 3 previously characterized bcl-2 over expressing MCL cell lines (JVM-2, Hbl-2, granta) were used. Cells were grown in standard media and exposed to a range of concentrations of GX15-070 with and without Vincristine. Dose-response was assessed by measuring viability at 48 hours using the WST-1 assay. In vivo experiments were conducted on immune deficient mice in which 5×106 cells were injected in the flank then treated IV with GX15-070 (q 2days × 5 doses), Vincristine (q4 days × 3 doses) or both starting 5 days later. Tumours were measured three times weekly. Results All three MCL cell lines over-expressed bcl-2 by western blot. Each MCL cell line showed sensitivity to GX15-070 at a range of concentrations. The addition of GX15-070 to low dose Vincristine (10−6) caused significant growth inhibition of each MCL cell line (see table 1). Discussion Our results demonstrate that using GX15-070 to target bcl-2 is an effective anti neoplastic approach against MCL cell lines in vitro. In addition, our results suggest that combining Vincristine and GX15-070 is a promising strategy in treating MCL. In vivo experiments to confirm this additive activity are still ongoing and will be presented in full. Initial impressions suggest that there is a rationale for the addition of GX15-070 to current cytotoxic regimens used to treat MCL in the setting of clinical trials. Table 1: Effect of Vincristine and GX15-070 on in vitro growth of 3 MCL cell lines Growth as % age of Control Cell Line JVM-2 HBL-2 Granta Vincristine alone (10-6 mg/ml) 92% 48% 89% GX15-070 alone (0.08 uM) 75% 76% 60% Vincristine 10-6 mg/ml and GX15-070 0.08 uM 52% 24% 52%


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3010-3010
Author(s):  
Raphael Koch ◽  
Martin Demant ◽  
Thiha Aung ◽  
Annemarie Guentsch ◽  
Nina Diering ◽  
...  

Abstract Introduction Patients with aggressive B-cell lymphoma are treated in curative intention. However, some patients experience fatal relapse, originating from refractory lymphoma cells with the capacity for clonogenic regrowth. We here addressed repopulation capacity of lymphoma cell subpopulations and the mechanisms regulating the populational composition in the growing tumor. Material & Methods We identified side population (SP) cells in diffuse large B-cell lymphoma cell lines and patient samples with the DNA-binding dye Hoechst33342, analyzed clonogenicity in vitro and in vivo and screened for differentially expressed genes and DNA-methylation patterns. A GFP-containing lentiviral vector construct was used to keep track of side population cells cultured among mixed cultures of SP and nonSP cells. Manipulation of canonical wnt-signaling was performed by lentiviral sh-RNA constructs as well as pharmacological tankyrase-inhibition by XAV-939. In vitro data were supported by in vivo experiments using a chorioallantoic membrane-assay. Results Colony assays and suspension cultures of sorted SP and nonSP cells revealed restriction of clonogenic potential to the SP cell population as well as resurgence of nonSP cells from purified SP cell progenitors, while mixed culture assays using a GFP-vector construct tracing the SP vs. nonSP-population revealed homeostasis between the two populations, showing both SP and nonSP cells contributing to either cell compartment. SP cells show enhanced canonical wnt-signaling and increased exosomal secretion of wnt3a. Suppression of canonical wnt-signaling resulted in reduced clonogenicity. Exosome stimulation of DLBCL cell lines resulted in increased clonogenicity, stabilization of beta catenin and enhanced TOP/FOP activity. Conclusion Here we show that tumor cells reversibly switch between states of autonomous and non-autonomous clonogenicity, and that such transitions are regulated by exosome-mediated wnt signaling. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Chiara Pighi ◽  
Taek-Chin Cheong ◽  
Mara Compagno ◽  
Enrico Patrucco ◽  
Maddalena Arigoni ◽  
...  

The expression of BCL6 in B cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase involved in the degradation of BCL6 and is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of Burkitt lymphoma (BL) patients. FBXO11 mutations impaired BCL6 degradation and the deletion of FBXO11 protein completely stabilized BCL6 levels in human BL cell lines. Conditional deletion of either one or two copies of the FBXO11 gene in mice cooperated with oncogenic MYC and accelerated B cell lymphoma onset, providing experimental evidence that FBXO11 is a haplo-insufficient oncosuppressor in B cell lymphoma. In WT and FBXO11-deficient BL mouse and human cell lines, targeting BCL6 via specific degrader or inhibitors partially impaired lymphoma growth in vitro and in vivo. Inhibition of MYC by the Omomyc mini-protein blocked cell proliferation and increased apoptosis, effects further increased by combined BCL6 targeting. Thus, by validating the functional role of FBXO11 mutations in BL we further highlight the key role of BCL6 in BL biology and provide evidence that innovative therapeutic approaches such as BCL6 degraders and direct MYC inhibition could be exploited as a targeted therapy for BL.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4905-4905 ◽  
Author(s):  
Stefano Sacchi ◽  
Maria Cosenza ◽  
Monica Civallero ◽  
Giulia Grisendi ◽  
Erika Road ◽  
...  

Abstract Abstract 4905 A curative treatment does not exist for indolent lymphoma and eventually patients die for progression and complications related to their disease. Thus, there is a need of new less toxic and more active treatment. Enzastaurin, a novel targeted agent, inhibits PKC-β by interacting competitively as its ATP-binding site. Several studies have shown that enzastaurin exhibits growth inhibiting effects on a wide array of cultured human tumour cells. Revlimid ® (lenalidomide), an oral immunomodulatory drug, have shown antineoplastic activity in various tumours, including multiple myeloma (MM), myelodysplastic syndrome (MDS), B-CLL, renal-cell carcinoma and prostate cancer and it is approved for the treatment of patients with MM and MDS bearing a deletion 5q. In the present research, we demonstrate that Revlimid ® alone induce G0/G1 arrest in WSU-NHL cell line, but not apoptosis. This would suggest that, in vitro, Revlimid ® has more a cytostatic than a cytotoxic effect in this cell line. Further, we have demonstrated that the combination of doses as low as 1 mM of Enzastaurin and Revlimid ® exerts, in vitro, a strong synergistic anti lymphoma activity. We also have showed that the combination decreases viability and induce apoptosis in B-cell lymphoma cell lines and peripheral blood mononuclear cells (PBMCs) from follicular lymphoma (FL) patients. The combination has no effect on normal PBMC and suppresses cell proliferation of B-cell lymphoma cell lines when co-cultured with bone marrow stromal cells (BMSCs) in a system that mimics the BM microenvironment. The combination induces a significantly higher rate of apoptosis in comparison with these caused by each agents utilized alone, as showed by flow cytometry. The combination activates both the extrinsic and intrinsic pathways of apoptosis resulting in caspase-8, caspase-9, caspase-3 and PARP cleavage. Furthermore, we have evaluated whether the combination has the ability to trigger apoptosis through BAD and we have showed its ability to activate BAD. Further, we have demonstrated that the combination decreases the expression of phosphorylated AKT and of some AKT downstream targets such as GSK-3β, m-TOR and p70S6. In addition, we have found that the combination reduces the activation of phosphorylated MAPK and of the downstream effector p90RSK. The MAPK signaling pathways have a multiple roles in natural processes such as cell growth, differentiation, and apoptosis. Taken together, these observations suggest that interrupting the PI3K/AKT and MAPK pathways is a promising therapeutic strategy against B-cell lymphoma cell lines. Therefore, these preclinical data, together with promising results obtained with Revlimid ® in the treatment of non-Hodgkin lymphoma, provide the rationale for evaluating the combination of Enzastaurin and Revlimid ® in the treatment of indolent lymphoma. These compounds, with a favourable toxicity profile, are not classic chemotherapeutic agents causing severe side effects and could be considered an example of a new innovative attempt of an anti-cancer “soft treatment”. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document