hek293t cell
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 56)

H-INDEX

9
(FIVE YEARS 3)

EXPLORE ◽  
2022 ◽  
Author(s):  
Qian Feng ◽  
Lin Wang ◽  
Yu Chen ◽  
Mengmei Li ◽  
Jie Teng ◽  
...  

2021 ◽  
Author(s):  
Kui Kang ◽  
Mengyi Zhang ◽  
Lei Yue ◽  
Weiwen Chen ◽  
Yangshuo Dai ◽  
...  

Plants produce diverse secondary compounds as natural protection against microbial and insect attack. Most of these compounds, including bitters and acids, are sensed by insect gustatory receptors (Grs). Acids are potentially toxic to insects, but there are few reports on sour compounds as ligands of insect Grs. Here, using two different heterologous expression systems, the insect Sf9 cell line and the mammalian HEK293T cell line, we started from crude extracts of rice (Oryza sativa) and successfully identified oxalic acid (OA) as a ligand of NlGr23a, a Gr in the brown planthopper Nilaparvata lugens. The antifeedant effect of OA on the brown planthopper was dose dependent, and NlGr23a is essential for OA's antifeedant activity in both artificial diets and rice plants. NlGr23a is also indispensable for tarsal OA sensing. To our knowledge, OA is the first identified ligand starting from plant crude extracts and the first known strong acid for insect Grs. These findings on rice-planthopper interactions will be of broad interest for pest control in agriculture and also for better understanding of how insects select host plants.


2021 ◽  
Author(s):  
Abeer H Obaid ◽  
Chryssa Zografou ◽  
Douangsone D Vadysirisack ◽  
Bailey Munro-Sheldon ◽  
Miriam L Fichtner ◽  
...  

Background: Autoantibodies targeting the acetylcholine receptor (AChR) in the serum of myasthenia gravis (MG) patients are broadly polyclonal and heterogeneous in their pathogenic capacity. Specifically, AChR autoantibody-mediated pathology occurs through three mechanisms that include complement-directed tissue damage, blocking of the acetylcholine binding site on the AChR, and modulation (internalization) of the AChR. Clinical assays used for diagnosis and prognosis measure only AChR autoantibody binding and they provide weak association with disease burden, thereby limiting understanding of mechanistic heterogeneity, and monitoring therapeutic response. Objective: To develop an in-vitro cell-based assay that measures AChR autoantibody-mediated complement membrane attack complex (MAC) formation. Methods: A HEK293T cell line, which is commonly used for live cell-based AChR autoantibody binding assays, was modified such that the expression of the complement regulator genes (CD46, CD55 and CD59) were disrupted using CRISPR/Cas9 genome editing. This modified cell line was used to measure serum AChR autoantibody-mediated complement MAC formation via flow cytometry. Results: AChR autoantibody-mediated MAC formation required the use of a modified HEK293T cell line in which the surface expression of three complement regulator genes was absent. Serum samples (n=155) from 97 clinically confirmed AChR patients were tested along with 32 healthy donor (HD) samples; the MG cohort included a wide range of disease burden and AChR autoantibody titer. AChR autoantibodies were detected in 139 of the 155 (89.7%) AChR patient samples via a live cell-based assay. Of the 139 AChR positive samples, autoantibody-mediated MAC formation was detected in 83 (59.7%), while no autoantibodies or MAC formation was detected in samples from the HD group. Autoantibody-mediated MAC formation positively associated with autoantibody binding in most MG patient samples. However, a subset displayed a disassociation between binding and MAC formation. Conclusions: We demonstrate the development of a novel assay for evaluating AChR autoantibody-mediated complement activity. It is anticipated that this assay will afford a deeper understanding of the heterogeneous disease pathology and allow for the identification of MG patients who may benefit from complement inhibitor therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Farhana Taher Sumya ◽  
Irina D. Pokrovskaya ◽  
Vladimir Lupashin

Conserved Oligomeric Golgi (COG) is an octameric protein complex that orchestrates intra-Golgi trafficking of glycosylation enzymes. Over a hundred individuals with 31 different COG mutations have been identified until now. The cellular phenotypes and clinical presentations of COG-CDGs are heterogeneous, and patients primarily represent neurological, skeletal, and hepatic abnormalities. The establishment of a cellular COG disease model will benefit the molecular study of the disease, explaining the detailed sequence of the interplay between the COG complex and the trafficking machinery. Moreover, patient fibroblasts are not a good representative of all the organ systems and cell types that are affected by COG mutations. We developed and characterized cellular models for human COG4 mutations, specifically in RPE1 and HEK293T cell lines. Using a combination of CRISPR/Cas9 and lentiviral transduction technologies, both myc-tagged wild-type and mutant (G516R and R729W) COG4 proteins were expressed under the endogenous COG4 promoter. Constructed isogenic cell lines were comprehensively characterized using biochemical, microscopy (superresolution and electron), and proteomics approaches. The analysis revealed similar stability and localization of COG complex subunits, wild-type cell growth, and normal Golgi morphology in all three cell lines. Importantly, COG4-G516R cells demonstrated increased HPA-647 binding to the plasma membrane glycoconjugates, while COG4-R729W cells revealed high GNL-647 binding, indicating specific defects in O- and N-glycosylation. Both mutant cell lines express an elevated level of heparin sulfate proteoglycans. Moreover, a quantitative mass-spectrometry analysis of proteins secreted by COG-deficient cell lines revealed abnormal secretion of SIL1 and ERGIC-53 proteins by COG4-G516R cells. Interestingly, the clinical phenotype of patients with congenital mutations in the SIL1 gene (Marinesco-Sjogren syndrome) overlaps with the phenotype of COG4-G516R patients (Saul-Wilson syndrome). Our work is the first compressive study involving the creation of different COG mutations in different cell lines other than the patient’s fibroblast. It may help to address the underlying cause of the phenotypic defects leading to the discovery of a proper treatment guideline for COG-CDGs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jinhua Wen ◽  
Menghua Zhao ◽  
Wenxiong Sun ◽  
Xiaohua Cheng ◽  
Luyi Yu ◽  
...  

Abstract Background The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is a characteristic of Alzheimer's disease (AD), at the same time, it is possible alterations of liver function could affect brain Aβ levels through changes in blood Aβ concentration. Over the last decade, a number of reports have shown that P-glycoprotein (encoded by ABC1B1) actively mediates the efflux transport of Aβ peptides. However, the mechanism by which Aβ peptides enter the cells is not clear. In the preliminary study, we found that the protein expression of organic anion transporting Polypeptide 1a4 (OATP1B1) in the liver tissue of mice with AD was significantly higher than that in the normal mice. In contrast, the protein expression of Oatp1a4 in the brain significantly decreased in mice with AD. OATP1B1, an important drug transporter might be related to the pathophysiology of AD. Results In this study, we established an OATP1B1-GFP-HEK293T cell model to confirm the OATP1B1 mediated transport of Aβ1-42. Compared to the control group of GFP-HEK293Tcells, the uptake of Aβ1-42 protein in the OATP1B1-GFP-HEK293T group increased significantly with the increase in concentration of Aβ1-42, and also increased significantly with an increase in the duration of incubation. Similar results were observed in the flow cytometry experiment, and the uptake of Aβ1-42in HEK293T-OATP1B1 cells was almost twice that in the control group. These results indicate that OATPs may act as an important “carrier” for the transport of Aβ1-42 from the blood to the tissues, including liver and brain. Conclusions This is a novel and interesting finding and OATP1B1 can be investigated as a new treatment target for AD.


2021 ◽  
Author(s):  
Sadfer Ali ◽  
Claudia Rivera-Trujillo ◽  
Desmond Schofield ◽  
Aminat Omotosho ◽  
Eli Keshavarz-Moore ◽  
...  

2021 ◽  
Author(s):  
Audrey Marie Genevieve RAGAGNIN ◽  
Vinod Sundaramoorthy ◽  
Marta Vidal ◽  
Cyril J Jagaraj ◽  
Sina Shadfar ◽  
...  

Abstract BackgroundMutations in the CCNF gene encoding cyclin F are associated with sporadic and familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but the underlying pathophysiological mechanisms are unknown. Proper functioning of the endoplasmic reticulum (ER) is essential for physiological cellular function. MethodsWe used human neuroblastoma SH-SY5Y and human embryonic kidney HEK293T cell lines and mouse primary neurons-overexpressing two familial ALS cyclin F mutants to examine whether mutant ALS/FTD-associated cyclin F perturbs key functions of the ER and Golgi compartments. Specific cellular assays were used to examine ER-Golgi transport (VSVGts045), the budding of vesicles from ER membranes and ER-associated degradation (ERAD). Immunocytochemistry was used to examine the morphology of the Golgi and ER-exit sites, and to detect ER stress and apoptosis. Western blotting was used to examine the content of vesicles budding from ER membranes and the interaction between Sec 31 and cyclin F. Flow cytometry was used to examine cell death.Results We demonstrated that mutant cyclin F inhibited protein transport from the ER to Golgi apparatus by a mechanism involving aberrant vesicle sorting from the ER. It also impeded ER-associated degradation, whereby misfolded ER proteins are ubiquitinated and degraded by the proteasome. This was associated with induction of ER stress and Golgi fragmentation, leading to apoptosis. Conclusion Together, these results demonstrate that ER dysfunction is a pathogenic pathway associated with ALS/FTD-variant cyclin F.


Author(s):  
Hamza Patel ◽  
Peter Archibald ◽  
Cindy Jung ◽  
Blair Roszell ◽  
Farlan Veraitch ◽  
...  

Lentiviral vectors (LVV) represent an important tool for vaccine development and other therapeutic modalities. However, inefficiencies in LVV manufacturing processes, such as the inability to achieve high cell densities with HEK293T cell lines in a fed batch process, have resulted in poor upstream yields. Optimisation of cell culture conditions is needed to improve upstream yields, which can be expedited by high-throughput screening (HTP). In this work, we describe the use of the 24 deep square well (24-DSW) microwell platform to develop a scale-down mimic of GSK’s established stable suspension LVV production process model at 2 L bioreactor scale. We found that matched mixing time was an effective basis for scale-translation between the stirred tank reactor (STR) and microwells. The growth kinetics and LVV productivity profile in the microwell were reproducible and comparable to the 2 L bioreactor process model. In both vessels, a 6-fold increase in cell density was achieved at the harvest time point and high cell viability (i.e. > 90 %) was also maintained throughout the entirety of the cultures. The 24-DSW model, therefore, is an effective scale-down model for larger-scale stirred-tank bioreactor culture and provides an important tool for rapid, high-throughput optimization of the LVV production process.


2021 ◽  
Author(s):  
Kaibiao Xu ◽  
Dongmei Wang ◽  
Yan He ◽  
Shengnan Wang ◽  
Guanghui Liu ◽  
...  

ABSTRACTObjective Autoimmune encephalitis (AE) is a large category disorder urging antibody characterization. The aim was to identify a novel AE related autoantibody targeting an intracellular synaptic protein. Methods Suspected AE patients had negative conventional antibodies screening but strong immunolabel signals on rat brain sections with the serum and cerebrospinal fluid (CSF) samples were considered burdening unkown antibody. Immunoprecipitation from the rat brain protein lysate followed by mass spectrometry analysis was used to identify the targeting antigen. Western blotting and/or cell-based assay (CBA) with antigen-overexpressing HEK293T cells were used for antibody specificity, epitope and IgG subtype determination. Patients with similar immunostaining pattern on rat brain sections were retrospectively screened for the antibody. Results The antibody against collapsin response mediator protein 2 (CRMP2), a synaptic protein involved in axon guidance, was identified in a patient with suspected AE. The patient samples reactivated with HEK293T cell overexpressed CRMP2, rather than CRMP1, 3, 4, and 5. The patient samples mainly stained neuronal cytoplasm of the cortex, hippocampus and cerebellum Purkinje cells. This reactivity was eliminated by pre-immunoabsorption with CRMP2-overexpressing HEK293T cells. CRMP2 truncation experiments indicated that 536 amino acids at C-terminus was necessary for the epitope. Subtype analysis showed that anti-CRMP2 antibody was IgG4. Moreover, screening from 19 suspected AE patients led to identification of anti-CRMP2 antibody in another patient with a diagnosis of encephalomyelitis. The two patients responded to immunotherapy. Conclusions This study discovered a novel anti-CRMP2 antibody associated with AE. Testing of the antibody might be promising for AE diagnosis and treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lili Li ◽  
Yueyue Shi ◽  
Sirui Li ◽  
Junxiao Liu ◽  
Shulong Zu ◽  
...  

Abstract Background Zika virus (ZIKV) infection and ZIKV epidemic have been continuously spreading silently throughout the world and its associated microcephaly and other serious congenital neurological complications poses a significant global threat to public health. Type I interferon response to ZIKV infection in host cells suppresses viral replication by inducing the expression of interferon-stimulated genes (ISGs). Methods The study aims to demonstrate the anti-ZIKV mechanism of PARP11. PARP11 knock out and overexpressing A549 cell lines were constructed to evaluate the anti-ZIKV function of PARP11. PARP11−/−, PARP12−/− and PARP11−/−PARP12−/− HEK293T cell lines were constructed to explain the synergistic effect of PARP11 and PARP12 on NS1 and NS3 protein degradation. Western blotting, immunofluorescence and immunoprecipitation assay were performed to illustrate the interaction between PARP11 and PARP12. Results Both mRNA and protein levels of PARP11 were induced in WT but not IFNAR1−/− cells in response to IFNα or IFNβ stimulation and ZIKV infection. ZIKV replication was suppressed in cells expressed PARP11 but was enhanced in PARP11−/− cells. PARP11 suppressed ZIKV independently on itself PARP enzyme activity. PARP11 interacted with PARP12 and promoted PARP12-mediated ZIKV NS1 and NS3 protein degradation. Conclusion We identified ADP-ribosyltransferase PARP11 as an anti-ZIKV ISG and found that it cooperated with PARP12 to enhance ZIKV NS1 and NS3 protein degradation. Our findings have broadened the understanding of the anti-viral function of ADP-ribosyltransferase family members, and provided potential therapeutic targets against viral ZIKV infection.


Sign in / Sign up

Export Citation Format

Share Document