scholarly journals Analysis of Splice Variants of the Immediate-Early 1 Region of Human Cytomegalovirus

2004 ◽  
Vol 78 (15) ◽  
pp. 8191-8200 ◽  
Author(s):  
Sita Awasthi ◽  
Jennifer A. Isler ◽  
James C. Alwine

ABSTRACT The major immediate-early (MIE) gene of human cytomegalovirus (HCMV) produces multiple mRNAs through differential splicing and polyadenylation. Reverse transcriptase PCR was used to characterize transcripts from exons 1, 2, 3, and 4 (immediate-early 1 [IE1]). The expected IE72 and IE19 mRNAs were detected, as well as two heretofore-uncharacterized transcripts designated IE17.5 and IE9. The IE72, IE19, and IE17.5 transcripts utilized the same 5′-splice site in exon 3. IE9 utilized a cryptic 5′-splice site within exon 3. The IE19, IE17.5, and IE9 transcripts all used different 3′-splice sites within exon 4. These spliced species occur in infected human foreskin fibroblast (HFF) cells, with accumulation kinetics similar to those of IE72 mRNA. IE19 and IE9 RNAs were much more abundant than IE17.5 RNA. Transfection of CV-1 cells with cDNAs resulted in IE19 and IE17.5 proteins detectable by antibodies to either N-terminal or C-terminal epitopes. No IE9 protein product has been detected. We have not been able to detect IE19, IE17.5, or IE9 proteins during infection of HFF, HEL, or U373MG cells. Failure to detect IE19 protein contrasts with a previous report (M. Shirakata, M. Terauchi, M. Ablikin, K. Imadome, K. Hirai, T. Aso, and Y. Yamanashi, J. Virol. 76:3158-3167, 2002) of IE19 protein expression in HCMV-infected HEL cells. Our analysis suggests that an N-terminal breakdown product of IE72 may be mistaken for IE19. Expression of IE19 or IE17.5 from its respective cDNA results in repression of viral gene expression in infected cells. We speculate that expression of these proteins during infection may be restricted to specific conditions or cell types.

2012 ◽  
Vol 93 (5) ◽  
pp. 1046-1058 ◽  
Author(s):  
James C. Towler ◽  
Bahram Ebrahimi ◽  
Brian Lane ◽  
Andrew J. Davison ◽  
Derrick J. Dargan

Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed.


2011 ◽  
Vol 92 (12) ◽  
pp. 2757-2769 ◽  
Author(s):  
Martin Zydek ◽  
Ralf Uecker ◽  
Nina Tavalai ◽  
Thomas Stamminger ◽  
Christian Hagemeier ◽  
...  

The onset of human cytomegalovirus (HCMV) lytic replication is strictly controlled by the host cell division cycle. Although viral entry of S/G2-phase cells is unperturbed expression of major immediate-early (MIE) genes IE1 and IE2 is tightly blocked in these cells. Besides the finding that cyclin-dependent kinase (CDK) activity is required for IE1/IE2 repression little is known about the nature of this cell cycle-dependent block. Here, we show that the block occurs after nuclear entry of viral DNA and prevents the accumulation of IE1/IE2 mRNAs, suggesting an inhibition of transcription. Remarkably, the presence of cis-regulatory regions of the MIE locus is neither sufficient nor necessary for IE1/IE2 repression in the S/G2 phase. Furthermore, the block of viral mRNA expression also affects other immediate-early transcribed regions, i.e. the US3 and UL36–38 gene loci. This suggests a mechanism of repression that acts in a general and not a gene-specific fashion. Such a nuclear, genome-wide repression of HCMV is typically mediated by the intrinsic immune defence at nuclear domain 10 (ND10) structures. However, we found that neither Daxx nor PML, the main players of ND10-based immunity, are required for the block to viral gene expression in the S/G2 phase. In addition, the viral tegument protein pp71 (pUL82), a major antagonist of the intrinsic immunity at pre-immediate-early times of infection, proved to be functional in S-phase cells. This suggests the existence of a yet undiscovered, CDK-dependent mechanism exerting higher-level control over immediate-early mRNA expression in HCMV-infected cells.


2009 ◽  
Vol 90 (10) ◽  
pp. 2364-2374 ◽  
Author(s):  
Ian J. Groves ◽  
Matthew B. Reeves ◽  
John H. Sinclair

Human cytomegalovirus (HCMV) lytic gene expression occurs in a regulated cascade, initiated by expression of the viral major immediate-early (IE) proteins. Transcribed from the major IE promoter (MIEP), the major IE genes regulate viral early and late gene expression. This study found that a substantial proportion of infecting viral genomes became associated with histones immediately upon infection of permissive fibroblasts at low m.o.i. and these histones bore markers of repressed chromatin. As infection progressed, however, the viral MIEP became associated with histone marks, which correlate with the known transcriptional activity of the MIEP at IE time points. Interestingly, this chromatin-mediated repression of the MIEP at ‘pre-IE’ times of infection could be overcome by inhibition of histone deacetylases, as well as by infection at high m.o.i., and resulted in a temporal advance of the infection cycle by inducing premature viral early and late gene expression and DNA replication. As well as the MIEP, and consistent with previous observations, the viral early and late promoters were also initially associated with repressive chromatin. However, changes in histone modifications around these promoters also occurred as infection progressed, and this correlated with the known temporal regulation of the viral early and late gene expression cascade. These data argue that the chromatin structure of all classes of viral genes are initially repressed on infection of permissive cells and that the chromatin structure of HCMV gene promoters plays an important role in regulating the time course of viral gene expression during lytic infection.


2002 ◽  
Vol 76 (1) ◽  
pp. 313-326 ◽  
Author(s):  
Jeffery L. Meier ◽  
Michael J. Keller ◽  
James J. McCoy

ABSTRACT We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.


2004 ◽  
Vol 78 (4) ◽  
pp. 1817-1830 ◽  
Author(s):  
Elizabeth A. White ◽  
Charles L. Clark ◽  
Veronica Sanchez ◽  
Deborah H. Spector

ABSTRACT The human cytomegalovirus (HCMV) IE2 86-kDa protein is a key viral transactivator and an important regulator of HCMV infections. We used the HCMV genome cloned as a bacterial artificial chromosome (BAC) to construct four HCMV mutants with disruptions in regions of IE2 86 that are predicted to be important for its transactivation and autoregulatory functions. Three of these mutants have mutations that remove amino acids 356 to 359, 427 to 435, and 505 to 511, which disrupts a region of IE2 86 implicated in the activation of HCMV early promoters, a predicted zinc finger domain, and a putative helix-loop-helix motif, respectively, while the fourth carries three arginine-to-alanine substitution mutations in the region of amino acids 356 to 359. The resulting recombinant viruses are not viable, and by using quantitative real-time reverse transcription-PCR and immunofluorescence we have determined the location of the block in their replicative cycles. The IE2 86Δ356-359 mutant is able to support early gene expression, as indicated by the presence of UL112-113 transcripts and UL112-113 and UL44 proteins in cells transfected with the mutant BAC. This mutant does not express late genes and behaves nearly indistinguishably from the IE2 86R356/7/9A substitution mutant. Both exhibit detectable upregulation of major immediate-early transcripts at early times. The IE2 86Δ427-435 and IE2 86Δ505-511 recombinant viruses do not activate the early genes examined and are defective in repression of the major immediate-early promoter. These two mutants also induce the expression of selected delayed early (UL89) and late genes at early times in the infection. We conclude that these three regions of IE2 86 are necessary for productive infections and for differential control of downstream viral gene expression.


2010 ◽  
Vol 84 (19) ◽  
pp. 9853-9863 ◽  
Author(s):  
Rhiannon R. Penkert ◽  
Robert F. Kalejta

ABSTRACT Herpesviral virions contain a tegument layer that consists primarily of viral proteins. The delivery of fully functional proteins to infected cells upon virion envelope fusion to the plasma membrane allows herpesviruses to modulate cellular activities prior to viral gene expression. Certain tegument proteins can also regulate viral processes. For example, the pp71 tegument protein encoded by the UL82 gene of human cytomegalovirus (HCMV) stimulates viral immediate early (IE) gene expression and thus acts to initiate the productive lytic infectious cycle. In terminally differentiated fibroblasts infected with HCMV, tegument-delivered pp71 traffics to the nucleus and degrades the cellular transcriptional corepressor Daxx to initiate viral IE gene expression and lytic replication. However, when HCMV infects incompletely differentiated cells, tegument-delivered pp71 remains in the cytoplasm, allowing the nucleus-localized Daxx protein to silence viral IE gene expression and promote the establishment of a latent infection in certain cell types. We sought to determine whether undifferentiated cells block the trafficking of tegument-delivered pp71 to the nucleus or whether differentiated cells facilitate the nuclear transport of tegument-delivered pp71. Heterogenous cell fusion experiments demonstrated that tegument-delivered pp71 found in the cytoplasm of undifferentiated NT2 cells could be driven into the nucleus by one or more factors provided by fully differentiated fibroblasts. Our data raise the intriguing possibility that latency is the default program launched by HCMV upon viral entry into cells and that lytic infection is initiated only in certain (differentiated) cells that can facilitate the delivery of incoming pp71 to the nucleus.


2019 ◽  
Vol 116 (35) ◽  
pp. 17492-17497 ◽  
Author(s):  
Donna Collins-McMillen ◽  
Mike Rak ◽  
Jason C. Buehler ◽  
Suzu Igarashi-Hayes ◽  
Jeremy P. Kamil ◽  
...  

Reactivation from latency requires reinitiation of viral gene expression and culminates in the production of infectious progeny. The major immediate early promoter (MIEP) of human cytomegalovirus (HCMV) drives the expression of crucial lytic cycle transactivators but is silenced during latency in hematopoietic progenitor cells (HPCs). Because the MIEP has poor activity in HPCs, it is unclear how viral transactivators are expressed during reactivation. It has been presumed that viral gene expression is reinitiated via de-repression of the MIEP. We demonstrate that immediate early transcripts arising from reactivation originate predominantly from alternative promoters within the canonical major immediate early locus. Disruption of these intronic promoters results in striking defects in re-expression of viral genes and viral genome replication in the THP-1 latency model. Furthermore, we show that these promoters are necessary for efficient reactivation in primary CD34+ HPCs. Our findings shift the paradigm for HCMV reactivation by demonstrating that promoter switching governs reactivation from viral latency in a context-specific manner.


1998 ◽  
Vol 72 (4) ◽  
pp. 2697-2707 ◽  
Author(s):  
Steven M. Rodems ◽  
Charles L. Clark ◽  
Deborah H. Spector

ABSTRACT The human cytomegalovirus (HCMV) UL112-113 promoter represents a useful model for studying temporal regulation of viral gene expression. Stimulation of this promoter by the 86-kDa immediate-early protein (IE86) is controlled by sequences between nucleotides −113 and −59, which include both an ATF/CREB and an IE86 binding site. In transient assays, the ATF/CREB site is essential, and the IE86 site, although nonessential, can enhance transcription. With recombinant viruses, we have assessed the function of these promoter elements in the context of the viral genome. Transcription from the inserted UL112-113 promoter shows the same temporal pattern as the endogenous promoter, including the switch to an upstream RNA start site late in infection. Deletion of sequences containing the IE86 site results in a decrease in the level of early transcription and elimination of late transcription. In contrast, when the ATF/CREB site is deleted, early RNA synthesis is almost completely abolished, but late transcription is comparable to that of the wild type, with repositioning of the RNA start site downstream by the number of nucleotides deleted. Replacement of sequences between −108 and −95 with the HCMVcis-repression signal from the major immediate-early promoter had no effect on the level of late RNAs but resulted in the repositioning of the RNA start site 39 nucleotides upstream. These results suggest that the ATF/CREB site is functional only at early times, while sequences containing the IE86 site modulate the level of early RNAs and may be required for activating late transcription in a distance-dependent manner.


2011 ◽  
Vol 92 (7) ◽  
pp. 1532-1538 ◽  
Author(s):  
Martina Adler ◽  
Nina Tavalai ◽  
Regina Müller ◽  
Thomas Stamminger

Nuclear domains 10 (ND10s) are discrete subnuclear structures that contain the three major protein components promyelocytic leukaemia protein (PML), hDaxx and Sp100. Previous studies identified the ND10-components PML and hDaxx as cellular restriction factors that independently counteract human cytomegalovirus (HCMV) infection via the repression of viral immediate-early (IE) gene expression. Consequently, we asked whether Sp100 is likewise involved in this repressive activity. Infection of Sp100 knockdown (kd) cells with HCMV resulted in a significantly increased plaque-forming ability. In addition, ablation of Sp100 led to a considerable increase in the number of IE1-expressing cells, indicating that Sp100 suppresses the initiation of viral gene expression. Next, double-kd cells, lacking either Sp100/hDaxx or Sp100/PML, were generated. Here, infection resulted in an additional enhancement in HCMV replication efficacy compared with the single-kd cells. Thus, our results further strengthen the concept that the three major ND10-components independently contribute to the cellular restriction of HCMV replication.


2018 ◽  
Author(s):  
Donna Collins-McMillen ◽  
Mike Rak ◽  
Jason Buehler ◽  
Suzu Igarashi-Hayes ◽  
Jeremy Kamil ◽  
...  

ABSTRACTReactivation from latency requires reinitiation of viral gene expression and culminates in the production of infectious progeny. The major immediate early promoter (MIEP) of human cytomegalovirus (HCMV) drives the expression of crucial lytic cycle transactivators but is silenced during latency in hematopoietic progenitor cells (HPCs). Because the MIEP is poorly active in HPCs, it is unclear how viral transactivators are expressed during reactivation. We demonstrate that transcripts originating from alternative promoters within the canonical major immediate early locus are abundantly expressed upon reactivation, whereas MIEP-derived transcripts remain undetectable. Further, we show that these promoters are necessary for efficient reactivation in primary CD34+ HPCs. Our findings change the paradigm for HCMV reactivation by demonstrating that promoter switching governs reactivation from viral latency in a context-specific manner.


Sign in / Sign up

Export Citation Format

Share Document