scholarly journals Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines

2012 ◽  
Vol 93 (5) ◽  
pp. 1046-1058 ◽  
Author(s):  
James C. Towler ◽  
Bahram Ebrahimi ◽  
Brian Lane ◽  
Andrew J. Davison ◽  
Derrick J. Dargan

Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed.

2010 ◽  
Vol 84 (19) ◽  
pp. 9853-9863 ◽  
Author(s):  
Rhiannon R. Penkert ◽  
Robert F. Kalejta

ABSTRACT Herpesviral virions contain a tegument layer that consists primarily of viral proteins. The delivery of fully functional proteins to infected cells upon virion envelope fusion to the plasma membrane allows herpesviruses to modulate cellular activities prior to viral gene expression. Certain tegument proteins can also regulate viral processes. For example, the pp71 tegument protein encoded by the UL82 gene of human cytomegalovirus (HCMV) stimulates viral immediate early (IE) gene expression and thus acts to initiate the productive lytic infectious cycle. In terminally differentiated fibroblasts infected with HCMV, tegument-delivered pp71 traffics to the nucleus and degrades the cellular transcriptional corepressor Daxx to initiate viral IE gene expression and lytic replication. However, when HCMV infects incompletely differentiated cells, tegument-delivered pp71 remains in the cytoplasm, allowing the nucleus-localized Daxx protein to silence viral IE gene expression and promote the establishment of a latent infection in certain cell types. We sought to determine whether undifferentiated cells block the trafficking of tegument-delivered pp71 to the nucleus or whether differentiated cells facilitate the nuclear transport of tegument-delivered pp71. Heterogenous cell fusion experiments demonstrated that tegument-delivered pp71 found in the cytoplasm of undifferentiated NT2 cells could be driven into the nucleus by one or more factors provided by fully differentiated fibroblasts. Our data raise the intriguing possibility that latency is the default program launched by HCMV upon viral entry into cells and that lytic infection is initiated only in certain (differentiated) cells that can facilitate the delivery of incoming pp71 to the nucleus.


2019 ◽  
Vol 116 (35) ◽  
pp. 17492-17497 ◽  
Author(s):  
Donna Collins-McMillen ◽  
Mike Rak ◽  
Jason C. Buehler ◽  
Suzu Igarashi-Hayes ◽  
Jeremy P. Kamil ◽  
...  

Reactivation from latency requires reinitiation of viral gene expression and culminates in the production of infectious progeny. The major immediate early promoter (MIEP) of human cytomegalovirus (HCMV) drives the expression of crucial lytic cycle transactivators but is silenced during latency in hematopoietic progenitor cells (HPCs). Because the MIEP has poor activity in HPCs, it is unclear how viral transactivators are expressed during reactivation. It has been presumed that viral gene expression is reinitiated via de-repression of the MIEP. We demonstrate that immediate early transcripts arising from reactivation originate predominantly from alternative promoters within the canonical major immediate early locus. Disruption of these intronic promoters results in striking defects in re-expression of viral genes and viral genome replication in the THP-1 latency model. Furthermore, we show that these promoters are necessary for efficient reactivation in primary CD34+ HPCs. Our findings shift the paradigm for HCMV reactivation by demonstrating that promoter switching governs reactivation from viral latency in a context-specific manner.


2002 ◽  
Vol 76 (19) ◽  
pp. 9744-9755 ◽  
Author(s):  
Alice P. W. Poon ◽  
Saul J. Silverstein ◽  
Bernard Roizman

ABSTRACT The α0 genes of herpes simplex virus 1 (HSV-1) contain three exons. Earlier studies have shown that the substitution of genomic sequences with a cDNA copy does not alter the capacity of the virus to replicate or establish latent infection. Other studies have demonstrated that HSV-1 may express alternatively spliced forms of α0 transcripts. The studies reported here centered on a mutant HSV-1(vCPc0) strain in which the genomic copies of the α0 gene were replaced with cDNA copies. From our research, we report the following observations. (i) In contrast to events transpiring in cells infected with wild-type virus, the expression of HSV-1(vCPc0) genes was delayed or restricted to α genes for many hours in rabbit skin cells and to a lesser extent in HEp-2 cells but not in Vero cells. This delay in the expression of HSV-1(vCPc0) β or γ genes was also multiplicity of infection dependent. (ii) Exposure to MG132, a proteasomal inhibitor, before infection with wild-type virus had no significant effect on the accumulation of viral proteins in Vero cells and caused an only slight delay in viral gene expression in rabbit skin cells in a multiplicity of infection-dependent fashion. The drug had no effect when it was added to the medium 3 h after infection. (iii) Rabbit skin or HEp-2 cells exposed to MG132 3 h after infection with the HSV-1(vCPc0) mutant accumulated only α proteins. This restriction was cell type dependent but not multiplicity of infection dependent. (iv) Both the delay in the expression of β and γ genes and the effect of MG132 added to the medium 3 h after infection were rescued by restoration of the intron 1 sequences in the HSV-1(vCPc0) mutant. However, cells transduced by baculoviruses expressing intron 1 RNA did not complement the HSV-1(vCPc0) mutant, suggesting that the function of intron 1 is in cis rather than in trans. We came to the following conclusions as a result. (i) Post-α gene expression requires the involvement of the proteasomal pathway in a cell type-dependent manner. Consistent with this requirement, the proapoptotic functions of MG132 are blocked in cells infected before exposure to the drug but not after exposure. (ii) A function encoded by the α0 gene that is absent from the cDNA copy is required for viral gene expression in a cell type- and multiplicity of infection-dependent fashion. The absence of this master function delays but does not ultimately block viral gene expression in the cell lines tested here.


2009 ◽  
Vol 90 (10) ◽  
pp. 2364-2374 ◽  
Author(s):  
Ian J. Groves ◽  
Matthew B. Reeves ◽  
John H. Sinclair

Human cytomegalovirus (HCMV) lytic gene expression occurs in a regulated cascade, initiated by expression of the viral major immediate-early (IE) proteins. Transcribed from the major IE promoter (MIEP), the major IE genes regulate viral early and late gene expression. This study found that a substantial proportion of infecting viral genomes became associated with histones immediately upon infection of permissive fibroblasts at low m.o.i. and these histones bore markers of repressed chromatin. As infection progressed, however, the viral MIEP became associated with histone marks, which correlate with the known transcriptional activity of the MIEP at IE time points. Interestingly, this chromatin-mediated repression of the MIEP at ‘pre-IE’ times of infection could be overcome by inhibition of histone deacetylases, as well as by infection at high m.o.i., and resulted in a temporal advance of the infection cycle by inducing premature viral early and late gene expression and DNA replication. As well as the MIEP, and consistent with previous observations, the viral early and late promoters were also initially associated with repressive chromatin. However, changes in histone modifications around these promoters also occurred as infection progressed, and this correlated with the known temporal regulation of the viral early and late gene expression cascade. These data argue that the chromatin structure of all classes of viral genes are initially repressed on infection of permissive cells and that the chromatin structure of HCMV gene promoters plays an important role in regulating the time course of viral gene expression during lytic infection.


2011 ◽  
Vol 112 (1) ◽  
pp. 307-317 ◽  
Author(s):  
Maria-Cristina Arcangeletti ◽  
Isabella Rodighiero ◽  
Prisco Mirandola ◽  
Flora De Conto ◽  
Silvia Covan ◽  
...  

2014 ◽  
Vol 89 (2) ◽  
pp. 1070-1082 ◽  
Author(s):  
Ya-Ru Fu ◽  
Xi-Juan Liu ◽  
Xiao-Jun Li ◽  
Zhang-zhou Shen ◽  
Bo Yang ◽  
...  

ABSTRACTCongenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily manifesting as neurological disorders. HCMV infection alters expression of cellular microRNAs (miRs) and induces cell cycle arrest, which in turn modifies the cellular environment to favor virus replication. Previous observations found that HCMV infection reduces miR-21 expression in neural progenitor/stem cells (NPCs). Here, we show that infection of NPCs and U-251MG cells represses miR-21 while increasing the levels of Cdc25a, a cell cycle regulator and known target of miR-21. These opposing responses to infection prompted an investigation of the relationship between miR-21, Cdc25a, and viral replication. Overexpression of miR-21 in NPCs and U-251MG cells inhibited viral gene expression, genome replication, and production of infectious progeny, while shRNA-knockdown of miR-21 in U-251MG cells increased viral gene expression. In contrast, overexpression of Cdc25a in U-251MG cells increased viral gene expression and production of infectious progeny and overcame the inhibitory effects of miR-21 overexpression. Three viral gene products—IE1, pp71, and UL26—were shown to inhibit miR-21 expression at the transcriptional level. These results suggest that Cdc25a promotes HCMV replication and elevation of Cdc25a levels after HCMV infection are due in part to HCMV-mediated repression of miR-21. Thus, miR-21 is an intrinsic antiviral factor that is modulated by HCMV infection. This suggests a role for miR-21 downregulation in the neuropathogenesis of HCMV infection of the developing CNS.IMPORTANCEHuman cytomegalovirus (HCMV) is a ubiquitous pathogen and has very high prevalence among population, especially in China, and congenital HCMV infection is a major cause for birth defects. Elucidating virus-host interactions that govern HCMV replication in neuronal cells is critical to understanding the neuropathogenesis of birth defects resulting from congenital infection. In this study, we confirm that HCMV infection downregulates miR-21 but upregulates Cdc25a. Further determined the negative effects of cellular miRNA miR-21 on HCMV replication in neural progenitor/stem cells and U-251MG glioblastoma/astrocytoma cells. More importantly, our results provide the first evidence that miR-21 negatively regulates HCMV replication by targeting Cdc25a, a vital cell cycle regulator. We further found that viral gene products of IE1, pp71, and UL26 play roles in inhibiting miR-21 expression, which in turn causes increases in Cdc25a and benefits HCMV replication. Thus, miR-21 appears to be an intrinsic antiviral factor that represents a potential target for therapeutic intervention.


1999 ◽  
Vol 73 (7) ◽  
pp. 5757-5766 ◽  
Author(s):  
James Chambers ◽  
Ana Angulo ◽  
Dhammika Amaratunga ◽  
Hongqing Guo ◽  
Ying Jiang ◽  
...  

ABSTRACT We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the largest member of the herpesvirus family, human cytomegalovirus (HCMV). In this study, an HCMV chip was fabricated and used to characterize the temporal class of viral gene expression. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of oligonucleotides on glass for ORFs in the HCMV genome. Viral gene expression was monitored by hybridization to the oligonucleotide microarrays with fluorescently labelled cDNAs prepared from mock-infected or infected human foreskin fibroblast cells. By using cycloheximide and ganciclovir to block de novo viral protein synthesis and viral DNA replication, respectively, the kinetic classes of array elements were classified. The expression profiles of known ORFs and many previously uncharacterized ORFs provided a temporal map of immediate-early (α), early (β), early-late (γ1), and late (γ2) genes in the entire genome of HCMV. Sequence compositional analysis of the 5′ noncoding DNA sequences of the temporal classes, performed by using algorithms that automatically search for defined and recurring motifs in unaligned sequences, indicated the presence of potential regulatory motifs for β, γ1, and γ2 genes. In summary, these fabricated microarrays of viral DNA allow rapid and parallel analysis of gene expression at the whole viral genome level. The viral chip approach coupled with global biochemical and genetic strategies should greatly speed the functional analysis of established as well as newly discovered large viral genomes.


2002 ◽  
Vol 76 (1) ◽  
pp. 313-326 ◽  
Author(s):  
Jeffery L. Meier ◽  
Michael J. Keller ◽  
James J. McCoy

ABSTRACT We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.


Sign in / Sign up

Export Citation Format

Share Document