scholarly journals Porcine Endogenous Retroviruses Infect Cells Lacking Cognate Receptors by an Alternative Pathway: Implications for Retrovirus Evolution and Xenotransplantation

2004 ◽  
Vol 78 (16) ◽  
pp. 8868-8877 ◽  
Author(s):  
Dimitri Lavillette ◽  
David Kabat

ABSTRACT A PHQ motif near the amino termini of gammaretroviral envelope glycoprotein surface (SU) subunits is important for infectivity but not for incorporation into virions or binding to cognate receptors. The H residue of this motif is most critical, with all substitutions we tested being inactive. Interestingly, porcine endogenous retroviruses (PERVs) of all three host-range groups, A, B, and C, lack full PHQ motifs, but most members have an H residue at position 10. H10A PERV mutants are noninfectious but were efficiently transactivated by adding to the assays a PHQ-containing SU or receptor-binding subdomain (RBD) derived from a gibbon ape leukemia virus (GALV). A requirement of this transactivation was a functional GALV receptor on the cells. In contrast to this heterologous transactivation, PERV RBDs and SUs were inactive in all tested cells, including porcine ST-IOWA cells. Surprisingly, transactivation by GALV RBD enabled wild-type or H10A mutant PERVs of all three host-range groups to efficiently infect cells from humans and rodents that lack functional PERV receptors and it substantially enhanced infectivities of wild-type PERVs, even for cells with PERV receptors. Thus, PERVs can suboptimally infect cells that contain cognate receptors or they can employ a transactivation pathway to more efficiently infect all cells. This ability to infect cells lacking cognate receptors was previously demonstrated only for nontransmissible variant gammaretroviruses with recombinant and mutant envelope glycoproteins. We conclude that some endogenously inherited mammalian retroviruses also have a receptor-independent means for overcoming host-range and interference barriers, implying a need for caution in xenotransplantation, especially of porcine tissues.

1998 ◽  
Vol 72 (1) ◽  
pp. 428-435 ◽  
Author(s):  
Jean Luc Battini ◽  
Olivier Danos ◽  
Jean Michel Heard

ABSTRACT Hydrophilic loops in the receptor binding domain of the amphotropic murine leukemia virus (MLV) envelope glycoprotein (SU) are predicted and may participate in SU-receptor interactions. We have replaced five segments of 6 to 15 amino acids located in each of these regions with an 11-amino-acid tag from the vesicular stomatitis virus glycoprotein (VSV-G). Substitution was compatible with envelope processing, transport, and incorporation into virions. However, three substitution mutants showed a temperature-dependent phenotype, suggesting structural unstability. Accessibility of the tagging epitope for a monoclonal anti-VSV-G antibody was greater in oligomeric than in monomeric SUs when insertion was done in VRA, a domain essential for receptor recognition. In contrast, accessibility was independent of structural constraints when insertion was done in VRB, a domain playing an accessory role in receptor binding. Interaction with the amphotropic receptor was investigated by interference assay and study of binding and infection of target cells with MLV particles coated with the substituted envelopes. Envelope-receptor interaction was abolished when substitution was performed in a potential loop-forming segment located at the N-terminal half of VRA. Although interaction was affected to variable extents, depending on the substituted segment, other mutants conserved the ability to interact with the amphotropic receptor. These experiments indicate the 14-amino-acid segment between positions 50 and 64 of SU as an essential determinant of amphotropic-receptor recognition. They also show that a foreign linear epitope can be tolerated in several locations of the amphotropic SU receptor binding site, and this result has implications for the design of targeted retroviral vectors.


2021 ◽  
Author(s):  
Andrea N.W. Lim ◽  
Minmin Yen ◽  
Kimberley D. Seed ◽  
David W. Lazinski ◽  
Andrew Camilli

ICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host-range mutants within infant rabbits infected with a mixture of wild type and OmpU mutant strains. ICP2 host-range mutants, that can now infect OmpU mutant strains, had missense mutations in putative tail fiber gene gp25 and putative adhesin gp23. Using site-specific mutagenesis we show that single or double mutations in gp25 are sufficient to generate the host-range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to give a host-range mutant phenotype. All ICP2 host-range mutants retained the ability to plaque on wild type V. cholerae cells. The strength of binding of host-range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host-range mutants evolve by a two-step process where, first, gp25 mutations are selected for their broad host-range, albeit accompanied by low level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near wild type efficiencies of adsorption and subsequent phage multiplication. Importance Concern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to a renewed interest in phage biology and their potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies an ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular co-evolutionary arms race presents fitness costs to both ICP2 and V. cholerae.


2006 ◽  
Vol 80 (6) ◽  
pp. 3104-3107 ◽  
Author(s):  
Nidia M. Oliveira ◽  
Karen B. Farrell ◽  
Maribeth V. Eiden

ABSTRACT Recently, a new endogenous koala gammaretrovirus, designated KoRV, was isolated from koalas. The KoRV genome shares 78% nucleotide identity with another gammaretrovirus, gibbon ape leukemia virus (GALV). KoRV is endogenous in koalas, while GALV is exogenous, suggesting that KoRV predates GALV and that gibbons and koalas acquired the virus at different times from a common source. We have determined that subtle adaptive differences between the KoRV and GALV envelope genes account for differences in their receptor utilization properties. KoRV represents a unique example of a gammaretrovirus whose envelope has evolved to allow for its expanded host range and zoonotic potential.


2012 ◽  
Vol 93 (9) ◽  
pp. 2037-2045 ◽  
Author(s):  
Jie Cui ◽  
Gilda Tachedjian ◽  
Mary Tachedjian ◽  
Edward C. Holmes ◽  
Shuyi Zhang ◽  
...  

A previous phylogenetic study suggested that mammalian gammaretroviruses may have originated in bats. Here we report the discovery of RNA transcripts from two putative endogenous gammaretroviruses in frugivorous (Rousettus leschenaultii retrovirus, RlRV) and insectivorous (Megaderma lyra retrovirus, MlRV) bat species. Both genomes possess a large deletion in pol, indicating that they are defective retroviruses. Phylogenetic analysis places RlRV and MlRV within the diversity of mammalian gammaretroviruses, with the former falling closer to porcine endogenous retroviruses and the latter to Mus dunni endogenous virus, koala retrovirus and gibbon ape leukemia virus. Additional genomic mining suggests that both microbat (Myotis lucifugus) and megabat (Pteropus vampyrus) genomes harbour many copies of endogenous retroviral forms related to RlRV and MlRV. Furthermore, phylogenetic analysis reveals the presence of three genetically diverse groups of endogenous gammaretroviruses in bat genomes, with M. lucifugus possessing members of all three groups. Taken together, this study indicates that bats harbour distinct gammaretroviruses and may have played an important role as reservoir hosts during the diversification of mammalian gammaretroviruses.


2002 ◽  
Vol 76 (23) ◽  
pp. 12369-12375 ◽  
Author(s):  
Peggy Ho Faix ◽  
Steven A. Feldman ◽  
Julie Overbaugh ◽  
Maribeth V. Eiden

ABSTRACT To evaluate host range differences between two different strains of feline leukemia virus subgroup B (FeLV-B), we compared the binding and infectivity patterns of retrovirus vectors bearing either FeLV-B-90Z or FeLV-B-GA envelopes. We report here that the ability of these envelopes to utilize different Pit1 orthologs is mediated primarily by the receptor binding domain; however, in the case of FeLV-B-90Z, the C terminus also contributes to the recognition of certain Pit1 orthologs.


2021 ◽  
Author(s):  
Andrea N.W. Lim ◽  
Minmin Yen ◽  
Kimberley D. Seed ◽  
David W. Lazinski ◽  
Andrew Camilli

AbstractICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host-range mutants within infant rabbits infected with a mixture of wild type and OmpU mutant strains. ICP2 host-range mutants had missense mutations in putative tail fiber gene gp25 and putative adhesin gp23. Using site-specific mutagenesis we show that single or double mutations in gp25 are sufficient to generate the host-range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to give a host-range mutant phenotype. All ICP2 host-range mutants retained the ability to plaque on wild type V. cholerae cells. The strength of binding of host-range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host-range mutants evolve by a two-step process where, first, gp25 mutations are selected for their broad host-range, albeit accompanied by low level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near wild type efficiencies of adsorption and subsequent phage multiplication.ImportanceConcern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to a renewed interest in phage biology and their potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies a ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular co-evolutionary arms race presents fitness costs to both ICP2 and V. cholerae.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Urszula Eksmond ◽  
Bryony Jenkins ◽  
Julia Merkenschlager ◽  
Walther Mothes ◽  
Jonathan P. Stoye ◽  
...  

ABSTRACT The envelope glycoprotein of diverse endogenous and exogenous retroviruses is considered inherently immunosuppressive. Extensive work mapped the immunosuppressive activity to a highly conserved domain, termed the immunosuppressive domain (ISD), in the transmembrane (TM) subunit of the envelope glycoprotein and identified two naturally polymorphic key residues that afford immunosuppressive activity to distinct envelope glycoproteins. Concurrent mutation of these two key residues (E14R and A20F) in the envelope glycoprotein of the Friend murine leukemia virus (F-MLV) ISD has been reported to abolish its immunosuppressive activity, without affecting its fusogenicity, and to weaken the ability of the virus to replicate specifically in immunocompetent hosts. Here, we show that mutation of these key residues did, in fact, result in a substantial loss of F-MLV infectivity, independently of host immunity, challenging whether associations exist between the two. Notably, a loss of infectivity incurred by the F-MLV mutant with the E14R and A20F double ISD mutation was conditional on expression of the ecotropic envelope receptor murine cationic amino acid transporter-1 (mCAT1) in the virus-producing cell. Indeed, the F-MLV mutant retained infectivity when it was produced by human cells, which naturally lack mCAT1 expression, but not by murine cells. Furthermore, mCAT1 overexpression in human cells impaired the infectivity of both the F-MLV double mutant and the wild-type F-MLV strain, suggesting a finely tuned relationship between the levels of mCAT1 in the producer cell and the infectivity of the virions produced. An adverse effect on this relationship, rather than disruption of the putative ISD, is therefore more likely to explain the loss of F-MLV infectivity incurred by mutations in key ISD residues E14 and A20. IMPORTANCE Retroviruses can interact with their hosts in ways that, although not entirely understood, can greatly influence their pathogenic potential. One such example is a putative immunosuppressive activity, which has been mapped to a conserved domain of the retroviral envelope glycoprotein of several exogenous as well as endogenous retroviruses. In this study, mutations naturally found in some envelope glycoproteins lacking immunosuppressive activity were shown to affect retrovirus infectivity only if the host cell that produced the retrovirus also expressed the cellular entry receptor. These findings shed light on a novel role for this conserved domain in providing the necessary stability to the envelope glycoprotein in order to withstand the interaction with the cellular receptor during virus formation. This function of the domain is critical for further elucidation of the mechanism of immunosuppression mediated by the retroviral envelope glycoprotein.


2002 ◽  
Vol 76 (6) ◽  
pp. 3045-3048 ◽  
Author(s):  
Beth A. Oldmixon ◽  
James C. Wood ◽  
Thomas A. Ericsson ◽  
Carolyn A. Wilson ◽  
Mary E. White-Scharf ◽  
...  

ABSTRACT Here we report the identification of inbred miniature swine that failed to produce human-tropic replication-competent porcine endogenous retroviruses (HTRC PERVs), using in vitro coculture assays. When HTRC PERVs were isolated from transmitting animals, all were recombinant viruses, with the receptor-binding domain of PERV-A combining with PERV-C-related sequences.


Sign in / Sign up

Export Citation Format

Share Document