scholarly journals VP16-Dependent Association of Chromatin-Modifying Coactivators and Underrepresentation of Histones at Immediate-Early Gene Promoters during Herpes Simplex Virus Infection

2004 ◽  
Vol 78 (18) ◽  
pp. 9689-9696 ◽  
Author(s):  
Francisco J. Herrera ◽  
Steven J. Triezenberg

ABSTRACT During infection by herpes simplex virus type 1 (HSV-1), the virion protein VP16 activates the transcription of viral immediate-early (IE) genes. Genetic and biochemical assays have shown that the potent transcriptional activation domain of VP16 can associate with general transcription factors and with chromatin-modifying coactivator proteins of several types. The latter interactions are particularly intriguing because previous reports indicate that HSV-1 DNA does not become nucleosomal during lytic infection. In the present work, chemical cross-linking and immunoprecipitation assays were used to probe the presence of activators, general transcription factors, and chromatin-modifying coactivators at IE gene promoters during infection of HeLa cells by wild-type HSV-1 and by RP5, a viral strain lacking the VP16 transcriptional activation domain. The presence of VP16 and Oct-1 at IE promoters did not depend on the activation domain. In contrast, association of RNA polymerase II, TATA-binding protein, histone acetyltransferases (p300 and CBP), and ATP-dependent remodeling proteins (BRG1 and hBRM) with IE gene promoters was observed in wild-type infections but was absent or reduced in cells infected by RP5. In contrast to the previous evidence for nonnucleosomal HSV-1 DNA, histone H3 was found associated with viral DNA at early times of infection. Interestingly, histone H3 was underrepresented on IE promoters in a manner dependent on the VP16 activation domain. Thus, the VP16 activation domain is responsible for recruiting general transcription factors and coactivators to IE promoters and also for dramatically reducing the association of histones with those promoters.

1997 ◽  
Vol 17 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M B Sainz ◽  
S A Goff ◽  
V L Chandler

C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains.


2006 ◽  
Vol 398 (3) ◽  
pp. 497-507 ◽  
Author(s):  
Yeon Sook Choi ◽  
Satrajit Sinha

The ESE (epithelium-specific Ets) subfamily of Ets transcription factors plays an important role in regulating gene expression in a variety of epithelial cell types. Although ESE proteins have been shown to bind to regulatory elements of some epithelial genes, the optimal DNA-binding sequence has not been experimentally ascertained for any member of the ESE subfamily of transcription factors. This has made the identification and validation of their targets difficult. We are studying ESE-2 (Elf5), which is highly expressed in epithelial cells of many tissues including skin keratinocytes. Here, we identify the preferred DNA-binding site of ESE-2 by performing CASTing (cyclic amplification and selection of targets) experiments. Our analysis shows that the optimal ESE-2 consensus motif consists of a GGA core and an AT-rich 5′- and 3′-flanking sequences. Mutational and competition experiments demonstrate that the flanking sequences that confer high DNA-binding affinity for ESE-2 show considerable differences from the known consensus DNA-binding sites of other Ets proteins, thus reinforcing the idea that the flanking sequences may impart recognition specificity for Ets proteins. In addition, we have identified a novel isoform of murine ESE-2, ESE-2L, that is generated by use of a hitherto unreported new exon and an alternate promoter. Interestingly, transient transfection assays with an optimal ESE-2 responsive reporter show that both ESE-2 and ESE-2L are weak transactivators. However, similar studies utilizing GAL4 chimaeras of ESE-2 demonstrate that while the DNA-binding ETS (E twenty-six) domain functions as a repressor, the PNT (pointed domain) of ESE-2 can act as a potent transcriptional activation domain. This novel transactivating property of PNT is also shared by ESE-3, another ESE family member. Identification of the ESE-2 consensus site and characterization of the transcriptional activation properties of ESE-2 shed new light on its potential as a regulator of target genes.


2004 ◽  
Vol 78 (12) ◽  
pp. 6282-6286 ◽  
Author(s):  
Shin-ichi Yokota ◽  
Noriko Yokosawa ◽  
Tamaki Okabayashi ◽  
Tatsuo Suzutani ◽  
Shunsuke Miura ◽  
...  

ABSTRACT We showed previously that herpes simplex virus type 1 (HSV-1) suppresses the interferon (IFN) signaling pathway during the early infection stage in the human amnion cell line FL. HSV-1 inhibits the IFN-induced phosphorylation of Janus kinases (JAK) in infected FL cells. In the present study, we showed that the suppressor of cytokine signaling-3 (SOCS3), a host negative regulator of the JAK/STAT pathway, is rapidly induced in FL cells after HSV-1 infection. Maximal levels of SOCS3 protein were detected at around 1 to 2 h after infection. This is consistent with the occurrence of HSV-1-mediated inhibition of IFN-induced JAK phosphorylation. The HSV-1 wild-type strain VR3 induced SOCS3 more efficiently than did mutants that are defective in UL41 or UL13 and that are hyperresponsive to IFN. Induction of the IRF-7 protein and transcriptional activation of IFN-α4, which occur in a JAK/STAT pathway-dependent manner, were poorly induced by VR3 but efficiently induced by the mutant viruses. In contrast, phosphorylation of IRF-3 and transcriptional activation of IFN-β, which are JAK/STAT pathway-independent process, were equally well induced by the wild-type strain and the mutants. In conclusion, the SOCS3 protein appears to be mainly responsible for the suppression of IFN signaling and IFN production that occurs during HSV-1 infection.


1998 ◽  
Vol 71 (2) ◽  
pp. 127-132 ◽  
Author(s):  
TATJANA SINGER ◽  
ALFONS GIERL ◽  
PETER A. PETERSON

Three new dominant suppressor mutations of the C1 transcription regulator gene in maize – C1-IΔ1, C1-IΔ2 and C1-IΔ3 – are described that suppress anthocyanin colouration in kernels similar to the function of the C1-I standard inhibitor. The C1-IΔ mutations were induced by imprecise excision of an En/Spm transposon in the third exon of the C1 gene. These transposon footprints cause a frameshift in the C1 open reading frame that leads to truncated proteins due to an early stop codon 30 amino acids upstream of the wild-type C1 protein. Therefore, the C1-IΔ gene products lack the carboxy-terminal transcriptional activation domain of C1. The C1-I standard allele also lacks this domain and in addition differs in 17 amino acids from the wild-type C1 allele. The new C1-IΔ alleles provide evidence that deletion of the carboxy-terminal activation domain alone is sufficient to generate a dominant suppressive effect on the function of wild-type C1.


2012 ◽  
Vol 70 (5) ◽  
pp. 855-865 ◽  
Author(s):  
Shiv B. Tiwari ◽  
Alemu Belachew ◽  
Siu Fong Ma ◽  
Melinda Young ◽  
Jules Ade ◽  
...  

1997 ◽  
Vol 17 (8) ◽  
pp. 4355-4362 ◽  
Author(s):  
G Jiménez ◽  
D Ish-Horowicz

Drosophila melanogaster neurogenesis requires the opposing activities of two sets of basic helix-loop-helix (bHLH) proteins: proneural proteins, which confer on cells the ability to become neural precursors, and the Enhancer-of-split [E(spl)] proteins, which restrict such potential as part of the lateral inhibition process. Here, we test if E(spl) proteins function as promoter-bound repressors by examining the effects on neurogenesis of an E(spl) derivative containing a heterologous transcriptional activation domain [E(spl) m7Act (m7Act)]. In contrast to the wild-type E(spl) proteins, m7Act efficiently induces neural development, indicating that it binds to and activates target genes normally repressed by E(spl). Mutations in the basic domain disrupt m7Act activity, suggesting that its effects are mediated through direct DNA binding. m7Act causes ectopic transcription of the proneural achaete and scute genes. Our results support a model in which E(spl) proteins normally regulate neurogenesis by direct repression of genes at the top of the neural determination pathway.


Sign in / Sign up

Export Citation Format

Share Document