socs3 protein
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 11 ◽  
Author(s):  
Arundhati Banerjee ◽  
Rakhi Dasgupta

Background: When STAT3 is activated only by the IL6 family of proteins, then gp130 (having a phosphopeptide motif) interacts with human SOCS3 which further binds to JAK and inhibits its protein kinase activity. Interaction of gp130 with SOCS3 targets only the IL-6 signaling cascade. The interaction occurs when SOCS3 binds to a particular motif on gp130 (centered upon pTyr759) after its phosphorylation. Previously, wet laboratory studies were done but computational exploration for the participating residues remained unexplored. Methodology: The 3D structure of human SOCS3 protein was modeled and its stereo-chemical parameters were satisfied. Crystallographic structures of gp130-phosphopeptide and JAK were studied. After protein docking, the complex underwent minimization and molecular dynamics simulation. Different stability parameters and binding patterns with residues were evaluated Results, Discussion and Conclusion: The best modeled structure of SOCS3 protein was selected and found that it had three helices and seven sheets interspersed with coils. Arg133, Tyr137 and Tyr98 from SOCS3 formed manifold binding patterns with gp130 (mainly with pTyr759 and Glu758). Lys62, Lys63 and Arg65 from SOCS3 were also found to interact with Val762 of gp130. Interactions with JAK were also studied. Residue 53, 62-65, 98, 133, 136 and 137 formed the predominant binding pockets in SOCS3. They can serve as important target sites as well. Altogether, it created elctrostatically charged pockets to accommodate the partner proteins for each other. Gp130 phosphopeptide was observed to be tightly accommodated in the electrostatically positive zones on SOCS3 surface. Net area for solvent accessibility was also found to get drastically reduced implying high participation of residues. Earlier studies documented that the interaction of these three proteins occurs with affinity and have satisfactory association with each other. Here in this study, free energy of binding for the triple protein interaction through the ΔG values helped to infer that SOCS3 interacted spontaneously (in thermodynamic sense). Many helical conformations formed coiled-coils providing high flexibility to interact spontaneously. Most of the interactions were through the responsible SH2 domain (46-127 residue length) of SOCS3. Residues 53, 62-64 and 98 formed coils while the residue number 137adopted sheet conformation from coils. Future Scope: This study shall instigate to block the gp130-binding sites of SOCS3 through targeting of drugs, thereby preventing SOCS3-gp130 interaction. This would allow JAK-STAT signaling cascade which is paramount for several biological functions


2020 ◽  
Author(s):  
Nina Martino ◽  
Ramon Bossardi Ramos ◽  
Shuhan Lu ◽  
Kara Leyden ◽  
Lindsay Tomaszek ◽  
...  

AbstractSOCS3 is the main inhibitor of the JAK/STAT3 pathway. This pathway is activated by interleukin 6 (IL-6), a major mediator of the cytokine storm during shock. To determine its role in the vascular response to shock, we challenged mice lacking SOCS3 in the adult endothelium (SOCS3iEKO) with a non-lethal dose of lipopolysaccharide (LPS). SOCS3iEKO mice died 16-24 hours post-injection after severe kidney failure. Loss of SOCS3 led to an LPS-induced type I interferon-like program, and high expression of pro-thrombotic and pro-adhesive genes. Consistently, we observed intraluminal leukocyte adhesion and NETosis, as well as retinal venular leukoembolization. Notably, heterozygous mice displayed an intermediate phenotype, suggesting a gene dose effect. In vitro studies were performed to study the role of SOCS3 protein levels in the regulation of the inflammatory response. In HUVEC, pulse-chase experiments showed that SOCS3 protein has a half-life below 20 minutes. Inhibition of SOCS3 ubiquitination and proteasomal degradation leads to protein accumulation and a stronger inhibition of IL-6 signaling and barrier function loss. Together, our data demonstrates that the regulation of SOCS3 protein levels is critical to inhibit IL-6-mediated endotheliopathy during shock and provides a promising new therapeutic avenue to prevent MODS though stabilization of endothelial SOCS3.Abstract Figure


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ke-ya Yang ◽  
Dong-liang Chen

Background. Shikonin is a major chemical component of zicao that possesses anti-inflammatory properties and the ability to mediate cellular and humoral immunity, especially in rheumatoid arthritis (RA). We investigated the impact of shikonin on inflammatory response in RA synovial fibroblasts using the CAIA model.Methods. Severe polyarticular arthritis was induced in Balb/c female mice. Expressions of lncRNA-NR024118, SOCS3, proinflammatory cytokines, and MMPs were evaluated using RT-RCR. Histone acetylation and SOCS3 protein expression were assessed by ChIP assay and western blot, respectively.Results. Mice treated with shikonin showed an abrogation of soft tissue and bone lesions. Shikonin remarkably enhanced the expression of NR024118 and SOCS3 and suppressed the secretion and expression of IL-6, IL-8, and MMPs. Proliferation of cultured RA synovial fibroblasts in the presence of IL-1βwas also significantly inhibited by shikonin. Moreover, shikonin dose-dependently increased acetylation of histone H3 at the promoter of NR024118. Finally, NR024118 overexpression and interference significantly changed SOCS3 expression and NR024118 interference could reverse regulation of shikonin on SOCS3, proinflammatory cytokines, and MMPs expression level in MH7A cells.Conclusion. Our results reveal that, in the CAIA mouse model of RA, shikonin has disease modifying activity that is attributable to the inhibition of inflammatory response via lncRNA-NR024118.


2014 ◽  
Vol 307 (2) ◽  
pp. G140-G148 ◽  
Author(s):  
Luan C. Koay ◽  
Rachael J. Rigby ◽  
Karen L. Wright

Autophagy is a catabolic process involved in homeostatic and regulated cellular protein recycling and degradation via the lysosomal degradation pathway. Emerging data associate impaired autophagy, increased activity in the endocannabinoid system, and upregulation of suppressor of cytokine signaling-3 (SOCS3) protein expression during intestinal inflammation. We have investigated whether these three processes are linked. By assessing the impact of the phytocannabinoid cannabidiol (CBD), the synthetic cannabinoid arachidonyl-2′-chloroethylamide (ACEA), and the endocannabinoid N-arachidonoylethanolamine (AEA) on autophagosome formation, we explored whether these actions were responsible for cyclic SOCS3 protein levels. Our findings show that all three cannabinoids induce autophagy in a dose-dependent manner in fully differentiated Caco-2 cells, a model of mature intestinal epithelium. ACEA and AEA induced canonical autophagy, which was cannabinoid type 1 receptor-mediated. In contrast, CBD was able to bypass the cannabinoid type 1 receptor and the canonical pathway to induce autophagy, albeit to a lesser extent. Functionally, all three cannabinoids reduced SOCS3 protein expression, which was reversed by blocking early and late autophagy. In conclusion, the regulatory protein SOCS3 is regulated by autophagy, and cannabinoids play a role in this process, which could be important when therapeutic applications for the cannabinoids in inflammatory conditions are considered.


Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. 647-658 ◽  
Author(s):  
María Paula Di Yorio ◽  
María Guillermina Bilbao ◽  
Ana María Biagini-Majorel ◽  
Alicia Graciela Faletti

Leptin, a protein secreted by different tissues, is able to exert both stimulatory and inhibitory effects on the ovulatory process. Thus, we investigated whether these opposite effects involve changes in the ovarian signalling pathways in response to different levels of leptin. To this end, we performed both in vivo and in vitro assays using immature rats primed with gonadotrophins to induce ovulation. The acute treatment with leptin, which inhibits the ovulatory process, caused a significant decrease in the phosphorylation of both STAT3 and ERK1/2 and a simultaneous increase in suppressors of cytokine signalling 3 (SOCS3) protein. However, daily administration of a low dose of leptin, which induces the ovulatory process, showed increased phosphorylation of both STAT3 and ERK1/2 and a decreased expression of SOCS3 protein. Using ovarian explant cultures, we also found that leptin was able to activate both STAT3 and ERK1/2 at 10 ng/ml but only STAT3 at 300–500 ng/ml. In addition, at 100–300 ng/ml, leptin increased protein but not mRNA expression of SOCS3. The addition of specific inhibitors of JAK/STAT and MAPK signalling pathways suppressed both the increase and the decrease in leptin-induced progesterone secretion. These results indicate that i) different levels of leptin are able to regulate STAT3, ERK1/2 and SOCS3 at both intra- and extra-ovarian level and that ii) the dual action of leptin on steroidogenesis seems to occur, at least in part, through both the ERK and STAT cascades.


2013 ◽  
Vol 454 (2) ◽  
pp. 283-293 ◽  
Author(s):  
Jolanta Wiejak ◽  
Julia Dunlop ◽  
Simon P. Mackay ◽  
Stephen J. Yarwood

The atherogenic cytokine IL-6 (interleukin-6) induces pro-inflammatory gene expression in VECs (vascular endothelial cells) by activating the JAK (Janus kinase)/STAT3 (signal transducer and activator of transcription 3) signalling pathway, which is normally down-regulated by the STAT3-dependent induction of the E3 ubiquitin ligase component SOCS3 (suppressor of cytokine signalling 3). Novel treatments based on the regulation of SOCS3 protein levels could therefore have value in the treatment of diseases with an inflammatory component, such as atherosclerosis. To this end we carried out a screen of 1031 existing medicinal compounds to identify inducers of SOCS3 gene expression and identified the flavanoids naringenin and flavone as effective inducers of SOCS3 protein, mRNA and promoter activity. This was in contrast with the action of traditional JAK/STAT3 inhibitors and the polyphenol resveratrol, which effectively suppress SOCS3 gene expression. Both naringenin and flavone also effectively suppressed IL-6-stimulated phosphorylation of STAT3 (Tyr705) which led to suppression of IL-6-induction of the atherogenic STAT3 target gene MCP1 (monocyte chemotactic protein-1), suggesting that their ability to induce SOCS3 gene expression is STAT3-independent. Supporting this idea was the observation that the general kinase inhibitor compound C inhibits flavone- and cAMP-dependent, but not JAK-dependent, SOCS3 induction in VECs. Indeed, the ability of flavanoids to induce SOCS3 expression requires activation of the ERK (extracellular-signal-regulated kinase)-dependent transcription factor SP3, and not STAT3. In the present paper we therefore describe novel molecular actions of flavanoids, which control SOCS3 gene induction and suppression of STAT3 signalling in VECs. These mechanisms could potentially be exploited to develop novel anti-atherogenic therapies.


2013 ◽  
Vol 304 (8) ◽  
pp. C717-C728 ◽  
Author(s):  
Bryon R. McKay ◽  
Daniel I. Ogborn ◽  
Jeff M. Baker ◽  
Kyle G. Toth ◽  
Mark A. Tarnopolsky ◽  
...  

Aging is associated with increased circulating interleukin-6 (IL-6) and a reduced myogenic capacity, marked by reduced muscle stem cell [satellite cell (SC)] activity. Although IL-6 is important for normal SC function, it is unclear whether elevated IL-6 associated with aging alters SC function. We hypothesized that mild chronically elevated IL-6 would be associated with a blunted SC response through altered IL-6 signaling and elevated suppressor of cytokine signaling-3 (SOCS3) in the elderly. Nine healthy older adult men (OA; 69.6 ± 3.9 yr) and 9 young male controls (YC; 21. 3 ± 3.1 yr) completed 4 sets of 10 repetitions of unilateral leg press and knee extension (75% of 1-RM). Muscle biopsies and blood were obtained before and 3, 24, and 48 h after exercise. Basal SC number was 33% lower in OA vs. YC, and the response was blunted in OA. IL-6+/Pax7+ cells demonstrated a divergent response in OA, with YC increasing to 69% at 3 h and peaking at 24 h (72%), while IL-6+/Pax7+ cells were not increased until 48 h in OA (61%). Type II fiber-associated phosphorylated signal transducer and activator of transcription (pSTAT3)+/Pax7+ cells demonstrated a similar delay in OA, not increasing until 48 h (vs. 3 h in YC). SOCS3 protein was 86% higher in OA. These data demonstrate an age-related impairment in normal SC function that appears to be influenced by SOCS3 protein and delayed induction of IL-6 and pSTAT3 in the SCs of OA. Collectively, these data suggest dysregulated IL-6 signaling as a consequence of aging contributes to the blunted muscle stem cell response.


Sign in / Sign up

Export Citation Format

Share Document