scholarly journals The Positively Charged Termini of L2 Minor Capsid Protein Required for Bovine Papillomavirus Infection Function Separately in Nuclear Import and DNA Binding

2004 ◽  
Vol 78 (24) ◽  
pp. 13447-13454 ◽  
Author(s):  
Alyson Fay ◽  
William H. Yutzy ◽  
Richard B. S. Roden ◽  
Junona Moroianu

ABSTRACT During the papillomavirus (PV) life cycle, the L2 minor capsid protein enters the nucleus twice: in the initial phase after entry of virions into cells and in the productive phase to mediate encapsidation of the newly replicated viral genome. Therefore, we investigated the interactions of the L2 protein of bovine PV type 1 (BPV1) with the nuclear import machinery and the viral DNA. We found that BPV1 L2 bound to the karyopherin α2 (Kap α2) adapter and formed a complex with Kap α2β1 heterodimers. Previous data have shown that the positively charged termini of BPV1 L2 are required for BPV1 infection after the binding of the virions to the cell surface. We determined that these BPV1 L2 termini function as nuclear localization signals (NLSs). Both the N-terminal NLS (nNLS) and the C-terminal NLS (cNLS) interacted with Kap α2, formed a complex with Kap α2β1 heterodimers, and mediated nuclear import via a Kap α2β1 pathway. Interestingly, the cNLS was also the major DNA binding site of BPV1 L2. Consistent with the promiscuous DNA encapsidation by BPV1 pseudovirions, this DNA binding occurred without nucleotide sequence specificity. Moreover, an L2 mutant encoding a scrambled version of the cNLS, which supports production of virions, rescued the DNA binding but not the Kap α2 interaction. These data support a model in which BPV1 L2 functions as an adapter between the viral DNA via the cNLS and the Kaps via the nNLS and facilitates nuclear import of the DNA during infection.

1998 ◽  
Vol 72 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Patricia M. Day ◽  
Richard B. S. Roden ◽  
Douglas R. Lowy ◽  
John T. Schiller

ABSTRACT We have used immunofluorescent staining and confocal microscopy to examine the subcellular localization of structural and nonstructural bovine papillomavirus (BPV) proteins in cultured cells that produce infectious virions. When expressed separately, L1, the major capsid protein, showed a diffuse nuclear distribution while L2, the minor capsid protein, was found to localize to punctate nuclear regions identified as promonocytic leukemia protein (PML) oncogenic domains (PODs). Coexpression of L1 and L2 induced a relocation of L1 into the PODs, leading to the colocalization of L1 and L2. The effect of L2 expression on the distribution of the nonstructural viral proteins E1 and E2, which are required for maintenance of the genome and viral DNA synthesis, was also examined. The localization of the E1 protein was unaffected by L2 expression. However, the pattern of anti-E2 staining was dramatically altered in L2-expressing cells. Similar to L1, E2 was shifted from a dispersed nuclear locality into the PODs and colocalized with L2. The recruitment of full-length E2 by L2 occurred in the absence of other viral components. L2 was shown previously to be essential for the generation of infectious BPV. Our present results provide evidence for a role for L2 in the organization of virion components by recruiting them to a distinct nuclear domain. This L2-dependent colocalization probably serves as a mechanism to promote the assembly of papillomaviruses either by increasing the local concentration of virion constituents or by providing the physical architecture necessary for efficient packaging and assembly. The data also suggest a role for a nonstructural viral protein, E2, in virion assembly, specifically the recruitment of the viral genome to the sites of assembly, through its high-affinity interaction with specific sequences in the viral DNA.


1983 ◽  
Vol 3 (3) ◽  
pp. 315-324 ◽  
Author(s):  
M P Quinlan ◽  
D M Knipe

Two herpes simplex virus proteins, the major capsid protein and the major DNA binding protein, are specifically localized to the nucleus of infected cells. We have found that the major proportion of these proteins is associated with the detergent-insoluble matrix or cytoskeletal framework of the infected cell from the time of their synthesis until they have matured to their final binding site in the cell nucleus. These results suggest that these two proteins may interact with or bind to the cellular cytoskeleton during or soon after their synthesis and throughout transport into the cell nucleus. In addition, the DNA binding protein remains associated with the nuclear skeleton at times when it is bound to viral DNA. Thus, viral DNA may also be attached to the nuclear framework. We have demonstrated that the DNA binding protein and the capsid protein exchange from the cytoplasmic framework to the nuclear framework, suggesting the direct movement of the proteins from one structure to the other. Inhibition of viral DNA replication enhanced the binding of the DNA binding protein to the cytoskeleton and increased the rate of exchange from the cytoplasmic framework to the nuclear framework, suggesting a functional relationship between these events. Inhibition of viral DNA replication resulted in decreased synthesis and transport of the capsid protein. We have been unable to detect any artificial binding of these proteins to the cytoskeleton when solubilized viral proteins were mixed with a cytoskeletal fraction or a cell monolayer. This suggested that the attachment of these proteins to the cytoskeleton represents the actual state of these proteins within the cell.


1983 ◽  
Vol 3 (3) ◽  
pp. 315-324
Author(s):  
M P Quinlan ◽  
D M Knipe

Two herpes simplex virus proteins, the major capsid protein and the major DNA binding protein, are specifically localized to the nucleus of infected cells. We have found that the major proportion of these proteins is associated with the detergent-insoluble matrix or cytoskeletal framework of the infected cell from the time of their synthesis until they have matured to their final binding site in the cell nucleus. These results suggest that these two proteins may interact with or bind to the cellular cytoskeleton during or soon after their synthesis and throughout transport into the cell nucleus. In addition, the DNA binding protein remains associated with the nuclear skeleton at times when it is bound to viral DNA. Thus, viral DNA may also be attached to the nuclear framework. We have demonstrated that the DNA binding protein and the capsid protein exchange from the cytoplasmic framework to the nuclear framework, suggesting the direct movement of the proteins from one structure to the other. Inhibition of viral DNA replication enhanced the binding of the DNA binding protein to the cytoskeleton and increased the rate of exchange from the cytoplasmic framework to the nuclear framework, suggesting a functional relationship between these events. Inhibition of viral DNA replication resulted in decreased synthesis and transport of the capsid protein. We have been unable to detect any artificial binding of these proteins to the cytoskeleton when solubilized viral proteins were mixed with a cytoskeletal fraction or a cell monolayer. This suggested that the attachment of these proteins to the cytoskeleton represents the actual state of these proteins within the cell.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Xiaomei Wang ◽  
Peng Xu ◽  
Fang Cheng ◽  
Yi Li ◽  
Zekun Wang ◽  
...  

ABSTRACT Human bocavirus 1 (HBoV1), which belongs to the genus Bocaparvovirus of the Parvoviridae family, causes acute respiratory tract infections in young children. In vitro, HBoV1 infects polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). HBoV1 encodes a small nonstructural protein, nuclear protein 1 (NP1), that plays an essential role in the maturation of capsid protein (VP)-encoding mRNAs and viral DNA replication. In this study, we determined the broad interactome of NP1 using the proximity-dependent biotin identification (BioID) assay combined with mass spectrometry (MS). We confirmed that two host mRNA processing factors, DEAH-box helicase 15 (DHX15) and cleavage and polyadenylation specificity factor 6 (CPSF6; also known as CFIm68), a subunit of the cleavage factor Im complex (CFIm), interact with HBoV1 NP1 independently of any DNA or mRNAs. Knockdown of CPSF6 significantly decreased the expression of capsid protein but not that of DHX15. We further demonstrated that NP1 directly interacts with CPSF6 in vitro and colocalizes within the virus replication centers. Importantly, we revealed a novel role of CPSF6 in the nuclear import of NP1, in addition to the critical role of CPSF6 in NP1-facilitated maturation of VP-encoding mRNAs. Thus, our study suggests that CPSF6 interacts with NP1 to escort NP1 imported into the nucleus for its function in the modulation of viral mRNA processing and viral DNA replication. IMPORTANCE Human bocavirus 1 (HBoV1) is one of the significant pathogens causing acute respiratory tract infections in young children worldwide. HBoV1 encodes a small nonstructural protein (NP1) that plays an important role in the maturation of viral mRNAs encoding capsid proteins as well as in viral DNA replication. Here, we identified a critical host factor, CPSF6, that directly interacts with NP1, mediates the nuclear import of NP1, and plays a role in the maturation of capsid protein-encoding mRNAs in the nucleus. The identification of the direct interaction between viral NP1 and host CPSF6 provides new insights into the mechanism by which a viral small nonstructural protein facilitates the multiple regulation of viral gene expression and replication and reveals a novel target for potent antiviral drug development.


2006 ◽  
Vol 80 (13) ◽  
pp. 6691-6696 ◽  
Author(s):  
Luise Florin ◽  
Katrin A. Becker ◽  
Carsten Lambert ◽  
Thorsten Nowak ◽  
Cornelia Sapp ◽  
...  

ABSTRACT Papillomaviruses enter cells via endocytosis (H. C. Selinka et al., Virology 299:279-287, 2002). After egress from endosomes, the minor capsid protein L2 accompanies the viral DNA to the nucleus and subsequently to the subnuclear promyelocytic leukemia protein bodies (P. M. Day et al., Proc. Natl. Acad. Sci. USA 101:14252-14257, 2004), suggesting that this protein may be involved in the intracytoplasmic transport of the viral genome. We now demonstrate that the L2 protein is able to interact with the microtubule network via the motor protein dynein. L2 protein was found attached to microtubules after uncoating of incoming human papillomavirus pseudovirions. Based on immunofluorescence and coimmunoprecipitation analyses, the L2 region interacting with dynein is mapped to the C-terminal 40 amino acids. Mutations within this region abrogating the L2/dynein interaction strongly reduce the infectivity of pseudoviruses, indicating that this interaction mediates the minus-end-directed transport of the viral genome along microtubules towards the nucleus.


2020 ◽  
Author(s):  
Meili Li ◽  
Yingjie Guo ◽  
Yangxi Deng ◽  
Yiwen Li ◽  
Xiaowen Ou ◽  
...  

Abstract Background: Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins that require to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. A nuclear membrane phosphoprotein encoded by EBV BLLF2, is believed to associate with viral DNA packaging and primary egress across the nuclear membrane. Results: Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assays and western blot were performed to explore the nuclear import mechanism of BLLF2. As results, BLLF2 was shown to be a nucleocytoplasmic shuttling protein, which was mediated neither by chromosomal region maintenance 1 (CRM1)- nor transporter associated with antigen processing (TAP)-dependent pathway. Yet, two functional nuclear localization signals (NLSs) of BLLF2, NLS1 (16KRQALETVPHPQNRGR31) and NLS2 (48PPVAKRRR58), were identified, whereas the predicted NES was nonfunctional. Finally, BLLF2 was proved to transport into the nucleus via Ran-dependent and importin β1-dependent pathway. Conclusions: This mechanism may contribute to a more extensive insight of the assembly and synthesis of EB virions in the nucleus, thus affording a new direction for the treatment of viruses.


2003 ◽  
Vol 9 (2) ◽  
pp. 21-24
Author(s):  
Yih-Leh Huang ◽  
Meilin Wang ◽  
Wei-Chih Ou ◽  
Chiung-Yau Fung ◽  
Li-Sheng Chen ◽  
...  

2005 ◽  
Vol 79 (11) ◽  
pp. 6723-6731 ◽  
Author(s):  
Ioannis Bossis ◽  
Richard B. S. Roden ◽  
Ratish Gambhira ◽  
Rongcun Yang ◽  
Mitsuo Tagaya ◽  
...  

ABSTRACT The papillomavirus capsid mediates binding to the cell surface and passage of the virion to the perinuclear region during infection. To better understand how the virus traffics across the cell, we sought to identify cellular proteins that bind to the minor capsid protein L2. We have identified syntaxin 18 as a protein that interacts with bovine papillomavirus type 1 (BPV1) L2. Syntaxin 18 is a target membrane-associated soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (tSNARE) that resides in the endoplasmic reticulum (ER). The ectopic expression of FLAG-tagged syntaxin 18, which disrupts ER trafficking, blocked BPV1 pseudovirion infection. Furthermore, the expression of FLAG-syntaxin 18 prevented the passage of BPV1 pseudovirions to the perinuclear region that is consistent with the ER. Genetic studies identified a highly conserved L2 domain, DKILK, comprising residues 40 to 44 that mediated BPV1 trafficking through the ER during infection via an interaction with the tSNARE syntaxin 18. Mutations within the DKILK motif of L2 that did not significantly impact virion morphogenesis or binding at the cell surface prevented the L2 interaction with syntaxin 18 and disrupted BPV1 infection.


2003 ◽  
Vol 9 (s1) ◽  
pp. 21-24 ◽  
Author(s):  
Yih-Leh Huang ◽  
Meilin Wang ◽  
Wei-Chih Ou ◽  
Chiung-Yau Fung ◽  
Li-Sheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document