scholarly journals Role of the Varicella-Zoster Virus Gene Product Encoded by Open Reading Frame 35 in Viral Replication In Vitro and in Differentiated Human Skin and T Cells In Vivo

2005 ◽  
Vol 79 (8) ◽  
pp. 4819-4827 ◽  
Author(s):  
Hideki Ito ◽  
Marvin H. Sommer ◽  
Leigh Zerboni ◽  
Armin Baiker ◽  
Bunji Sato ◽  
...  

ABSTRACT Although genes related to varicella-zoster virus (VZV) open reading frame 35 (ORF35) are conserved in the herpesviruses, information about their contributions to viral replication and pathogenesis is limited. Using a VZV cosmid system, we deleted ORF35 to produce two null mutants, designated rOkaΔ35(#1) and rOkaΔ35(#2), and replaced ORF35 at a nonnative site, generating two rOkaΔ35/35@Avr mutants. ORF35 Flag-tagged recombinants were made by inserting ORF35-Flag at the nonnative Avr site as the only copy of ORF35, yielding rOkaΔ35/35Flag@Avr, or as a second copy, yielding rOka35Flag@Avr. Replication of rOkaΔ35 viruses was diminished in melanoma and Vero cells in a 6-day analysis of growth kinetics. Plaque sizes of rOkaΔ35 mutants were significantly smaller than those of rOka in melanoma cells. Infection of melanoma cells with rOkaΔ35 mutants was associated with disrupted cell fusion and polykaryocyte formation. The small plaque phenotype was not corrected by growth of rOkaΔ35 mutants in melanoma cells expressing the major VZV glycoprotein E, gE. The rOkaΔ35/35@Avr viruses displayed growth kinetics and plaque morphologies that were indistinguishable from those of rOka. Analysis with ORF35-Flag recombinants showed that the ORF35 gene product localized predominantly to the nuclei of infected cells. Evaluations in the SCIDhu mouse model demonstrated that ORF35 was required for efficient VZV infection of skin and T-cell xenografts, although the decrease in infectivity was most significant in skin. These mutagenesis experiments indicated that ORF35 was dispensable for VZV replication, but deleting ORF35 diminished growth in cultured cells and was associated with attenuated VZV infection of differentiated human skin and T cells in vivo.

2007 ◽  
Vol 81 (7) ◽  
pp. 3229-3239 ◽  
Author(s):  
Xibing Che ◽  
Barbara Berarducci ◽  
Marvin Sommer ◽  
William T. Ruyechan ◽  
Ann M. Arvin

ABSTRACT Varicella-zoster virus (VZV) open reading frame 10 (ORF10) is a determinant of virulence in SCIDhu skin xenografts but not in human T cells in vivo. In this analysis of the regulation of ORF10 transcription, we have identified four ORF10-related transcripts, including a major 1.3-kb RNA spanning ORF10 only and three other read-through transcripts. Rapid-amplification-of-cDNA-ends experiments indicated that the 1.3-kb transcript of ORF10 has single initiation and termination sites. In transient expression assays, the ORF10 promoter was strongly stimulated by the major VZV transactivator, IE62. Deletion analyses revealed approximate boundaries for the full ORF10 promoter activity between −75 and −45 and between +5 and −8, relative to the ORF10 transcription start site. The recombinant virus POKA10-Δpro, with the ORF10 promoter deletion, blocked transcription of ORF10 and also of ORF9A and ORF9 mRNAs, whereas expression of read-through ORF9A/9/10 and ORF9/10 transcripts was increased, compensating for the loss of the monocistronic mRNAs. The cellular factor USF bound specifically to its consensus site within the ORF10 promoter and was required for IE62 transactivation, whereas disrupting the predicted TATA boxes or Oct-1 binding elements had no effect. The USF binding site was disrupted in the recombinant virus, POKA10-proΔUSF, and no ORF10 protein was produced. Both ORF10 promoter mutants reduced VZV replication in SCIDhu skin xenografts. These observations provided further evidence of the contribution of the ORF10 protein to VZV pathogenesis in skin and demonstrated that VZV depends upon the cellular transcriptional factor USF to support its virulence in human skin in vivo.


2002 ◽  
Vol 76 (16) ◽  
pp. 8468-8471 ◽  
Author(s):  
Jennifer Moffat ◽  
Hideki Ito ◽  
Marvin Sommer ◽  
Shannon Taylor ◽  
Ann M. Arvin

ABSTRACT Varicella-zoster virus (VZV) glycoprotein I (gI) is dispensable in cell culture; the SCIDhu model of VZV pathogenesis was used to determine whether gI is necessary in vivo. The parental and repaired viruses grew in human skin and thymus/liver implants, but the gI deletion mutant was not infectious. Thus, gI is essential for VZV infectivity in skin and T cells.


2008 ◽  
Vol 82 (15) ◽  
pp. 7653-7665 ◽  
Author(s):  
Angela Erazo ◽  
Michael B. Yee ◽  
Nikolaus Osterrieder ◽  
Paul R. Kinchington

ABSTRACT Varicella-zoster virus (VZV) open reading frame 66 (ORF66) encodes a serine/threonine protein kinase that is not required for VZV growth in most cell types but is needed for efficient growth in T cells. The ORF66 kinase affects nuclear import and virion packaging of IE62, the major regulatory protein, and is known to regulate apoptosis in T cells. Here, we further examined the importance of ORF66 using VZV recombinants expressing green fluorescent protein (GFP)-tagged functional and kinase-negative ORF66 proteins. VZV virions with truncated or kinase-inactivated ORF66 protein were marginally reduced for growth and progeny yields in MRC-5 fibroblasts but were severely growth and replication impaired in low-passage primary human corneal stromal fibroblasts (PCF). To determine if the growth impairment was due to ORF66 kinase regulation of IE62 nuclear import, recombinant VZVs that expressed IE62 with alanine residues at S686, the suspected target by which ORF66 kinase blocks IE62 nuclear import, were made. IE62 S686A expressed by the VZV recombinant remained nuclear throughout infection and was not packaged into virions. However, the mutant virus still replicated efficiently in PCF cells. We also show that inactivation of the ORF66 kinase resulted in only marginally increased levels of apoptosis in PCF cells, which could not fully account for the cell-specific growth requirement of ORF66 kinase. Thus, the unique short region VZV kinase has important cell-type-specific functions that are separate from those affecting IE62 and apoptosis.


2006 ◽  
Vol 80 (7) ◽  
pp. 3238-3248 ◽  
Author(s):  
Xibing Che ◽  
Leigh Zerboni ◽  
Marvin H. Sommer ◽  
Ann M. Arvin

ABSTRACT The open reading frame 10 (ORF10) of varicella-zoster virus (VZV) encodes a tegument protein that enhances transactivation of VZV genes and has homology to herpes simplex virus type 1 (HSV-1) VP16. While VP16 is essential for HSV replication, ORF10 is dispensable for vaccine OKA (VOKA) growth in vitro. We used parent OKA (POKA) cosmids to delete ORF10, producing POKAΔ10; point mutations that disrupted the acidic activation domain and the putative motif for binding human cellular factor 1 (HCF-1) in ORF10 protein yielded POKA10-Phe28Ala, POKA10-Phe28Ser, and POKA10-mHCF viruses. Deleting ORF10 or mutating these two functional domains had no effect on VZV replication, immediate-early gene transcription, or virion assembly in vitro. However, deleting ORF10 reduced viral titers and the extent of cutaneous lesions significantly in SCIDhu skin xenografts in vivo compared to POKA. Epidermal cells infected with POKAΔ10 had significantly fewer DNA-containing nucleocapsids and complete virions compared to POKA; extensive aggregates of intracytoplasmic viral particles were also observed. Altering the activation or the putative HCF-1 domains of ORF10 protein had no consequences for VZV replication in vivo. Thus, the decreased pathogenic potential of POKAΔ10 in skin could not be attributed to absence of these ORF10 protein functions. In contrast to skin cells, deleting ORF10 did not impair VZV T-cell tropism in vivo, as assessed by infectious virus yields. We conclude that ORF10 protein is required for efficient VZV virion assembly and is a specific determinant of VZV virulence in epidermal and dermal cells in vivo.


1993 ◽  
Vol 67 (7) ◽  
pp. 4379-4385 ◽  
Author(s):  
P Defechereux ◽  
L Melen ◽  
L Baudoux ◽  
M P Merville-Louis ◽  
B Rentier ◽  
...  

2003 ◽  
Vol 77 (1) ◽  
pp. 489-498 ◽  
Author(s):  
Hideki Ito ◽  
Marvin H. Sommer ◽  
Leigh Zerboni ◽  
Hongying He ◽  
Dwayne Boucaud ◽  
...  

ABSTRACT Varicella-zoster virus (VZV) glycoprotein I is dispensable in cell culture but necessary for infection of human skin and T cells in SCIDhu mice in vivo. The gI promoter contains an activating upstream sequence that binds the cellular transactivators specificity factor 1 (Sp1) and upstream stimulatory factor (USF) and an open reading frame 29 (ORF29)-responsive element (29RE), which mediates enhancement by ORF29 DNA binding protein of immediate-early 62 (IE62)-induced transcription. Recombinants, rOKAgI-Sp1 and rOKAgI-USF, with two base pair substitutions in Sp1 or USF sites, replicated like rOKA in vitro, but infectivity of rOKAgI-Sp1 was significantly impaired in skin and T cells in vivo. A double mutant, rOKAgI-Sp1/USF, did not replicate in skin but yielded low titers of infectious virus in T cells. The repaired protein, rOKAgI:rep-Sp1/USF, was as infectious as rOKA. Thus, disrupting gI promoter sites for cellular transactivators altered VZV virulence in vivo, with variable consequences related to the cellular factor and the host cell type. Mutations in the 29RE of the gI promoter were made by substituting each of four 10-bp blocks in this region with a 10-bp sequence, GATAACTACA, that was predicted to interfere with enhancer effects of the ORF29 protein. One of these mutants, which was designated rOKAgI-29RE-3, had diminished replication in skin and T cells, indicating that ORF29 protein-mediated enhancement of gI expression contributes to VZV virulence. Mutations within promoters of viral genes that are nonessential in vitro should allow construction of recombinant herpesviruses that have altered virulence in specific host cells in vivo and may be useful for designing herpesviral gene therapy vectors and attenuated viral vaccines.


2003 ◽  
Vol 77 (2) ◽  
pp. 1268-1280 ◽  
Author(s):  
Jeremy O. Jones ◽  
Ann M. Arvin

ABSTRACT During primary infection, varicella-zoster virus (VZV) is spread via lymphocytes to skin, where it induces a rash and establishes latency in sensory ganglia. A live, attenuated varicella vaccine (vOka) was generated by using the VZV Oka strain (pOka), but the molecular basis for vOka attenuation remains unknown. Little is known concerning the effects of wild-type or attenuated VZV on cellular gene regulation in the host cells that are critical for pathogenesis. In this study, transcriptional profiles of primary human T cells and fibroblasts infected with VZV in cell culture were determined by using 40,000-spot human cDNA microarrays. Cellular gene transcription in human skin xenografts in SCID mice that were infected with VZV in vivo was also evaluated. The profiles of cellular gene transcripts that were induced or inhibited in infected human foreskin fibroblasts (HFFs), T cells, and skin in response to pOka and vOka infection were similar. However, significant alterations in cellular gene regulation were observed among the three differentiated human cell types that were examined, suggesting specific differences in the biological consequences of VZV infection related to the target cell. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time reverse transcription-PCR analysis of VZV-infected cells. Interestingly, the transcription of caspase 8 was found to be decreased in infected T cells but not in HFFs or skin, which may signify a tissue-specific antiapoptosis mechanism. The use of microarrays to demonstrate differences in effects on host cell genes in primary, biologically relevant cell types provides background information for experiments to link these various response phenotypes with mechanisms of VZV pathogenesis that are important for the natural course of human infection.


2003 ◽  
Vol 77 (20) ◽  
pp. 11180-11185 ◽  
Author(s):  
Hitoshi Sato ◽  
Lesley Pesnicak ◽  
Jeffrey I. Cohen

ABSTRACT Varicella-zoster virus (VZV) results in a lifelong latent infection in human sensory and cranial nerve ganglia after primary infection. VZV open reading frame 47 (ORF47) and ORF66 encode protein kinases that phosphorylate several viral proteins, including VZV glycoprotein gE and ORF32, ORF62, and ORF63 proteins. Here we show that the ORF47 protein kinase also phosphorylates gI. While ORF47 is essential for virus replication in human T cells and skin, we found the gene to be dispensable for establishment of latent infection in dorsal root ganglia of rodents. ORF66 protein is expressed during latency. Rodents infected with VZV unable to express ORF66 developed latent infection at a rate similar to that for the parental virus. ORF63 transcripts, a hallmark of VZV latency, were also detected in similar numbers of animals infected with the ORF47 and ORF66 mutants and with the parental virus. VZV mutants unable to express four of the six genes that do not have herpes simplex virus (HSV) homologs (ORFs 1, 13, 32, 57) were also unimpaired for establishment of latency. While a truncated HSV VP16 mutant was previously reported to be unable to establish latency in a mouse model, we found that VZV with a deletion of ORF10, the homolog of HSV VP16, was dispensable for establishment of latency. Thus, seven genes, including one expressed during latency, are dispensable for establishing latent VZV infection.


2008 ◽  
Vol 82 (12) ◽  
pp. 5825-5834 ◽  
Author(s):  
Xibing Che ◽  
Mike Reichelt ◽  
Marvin H. Sommer ◽  
Jaya Rajamani ◽  
Leigh Zerboni ◽  
...  

ABSTRACT The gene cluster composed of varicella-zoster virus (VZV) open reading frame 9 (ORF9) to ORF12 encodes four putative tegument proteins and is highly conserved in most alphaherpesviruses. In these experiments, the genes within this cluster were deleted from the VZV parent Oka (POKA) individually or in combination, and the consequences for VZV replication were evaluated with cultured cells in vitro and with human skin xenografts in SCID mice in vivo. As has been reported for ORF10, ORF11 and ORF12 were dispensable for VZV replication in melanoma and human embryonic fibroblast cells. In contrast, deletion of ORF9 was incompatible with the recovery of infectious virus. ORF9 localized to the virion tegument and formed complexes with glycoprotein E, which is an essential protein, in VZV-infected cells. Recombinants lacking ORF10 and ORF11 (POKAΔ10/11), ORF11 and ORF12 (POKAΔ11/12), or ORF10, ORF11 and ORF12 (POKAΔ10/11/12) were viable in cultured cells. Their growth kinetics did not differ from those of POKA, and nucleocapsid formation and virion assembly were not disrupted. In addition, these deletion mutants showed no differences compared to POKA in infectivity levels for primary human tonsil T cells. Deletion of ORF12 had no effect on skin infection, whereas replication of POKAΔ11, POKAΔ10/11, and POKAΔ11/12 was severely reduced, and no virus was recovered from skin xenografts inoculated with POKAΔ10/11/12. These results indicate that with the exception of ORF9, the individual genes within the ORF9-to-ORF12 gene cluster are dispensable and can be deleted simultaneously without any apparent effect on VZV replication in vitro but that the ORF10-to-ORF12 cluster is essential for VZV virulence in skin in vivo.


Sign in / Sign up

Export Citation Format

Share Document