scholarly journals Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Anna K. P. Serquiña ◽  
Diane M. Kambach ◽  
Ontara Sarker ◽  
Joseph M. Ziegelbauer

ABSTRACT From various screens, we found that Kaposi’s sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo-infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo-infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi’s sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene expression. A cancer virus, Kaposi’s sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8 [HHV-8]), encodes multiple miRNAs that repress gene expression of multiple enzymes that are important for cholesterol synthesis. In cells with these viral miRNAs or with natural infection, cholesterol levels are reduced, indicating these viral miRNAs decrease cholesterol levels. A modified form of cholesterol, 25-hydroxycholesterol, is generated directly from cholesterol. Addition of 25-hydroxycholesterol to primary cells inhibited KSHV infection of cells, suggesting that viral miRNAs may decrease cholesterol levels to decrease the concentration of 25-hydroxycholesterol and to promote infection. These results suggest a new virus-host relationship and indicate a previously unidentified viral strategy to lower cholesterol levels.

2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Mohanan Valiya Veettil ◽  
Gayathri Krishna ◽  
Arunava Roy ◽  
Anandita Ghosh ◽  
Dipanjan Dutta ◽  
...  

ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is etiologically associated with endothelial Kaposi’s sarcoma (KS) in immunocompromised individuals. KS lesion cells exhibit many similarities to neuroendocrine (NE) cancers, such as highly vascular and red/purple tumor lesions, spindle-shaped cells, an insignificant role for classic oncogenes in tumor development, the release of bioactive amines, and indolent growth of the tumors. However, the mechanistic basis for the similarity of KS lesion endothelial cells to neuroendocrine tumors remains unknown. Next-generation sequencing and bioinformatics analysis in the present study demonstrate that endothelial cells latently infected with KSHV express several neuronal and NE genes. De novo infection of primary dermal endothelial cells with live and UV-inactivated KSHV demonstrated that viral gene expression is responsible for the upregulation of five selected NE genes (adrenomedullin 2 [ADM2], histamine receptor H1 [HRH1], neuron-specific enolase [NSE] [ENO2], neuronal protein gene product 9.5 [PGP9.5], and somatostatin receptor 1 [SSTR1]). Immunofluorescence and immunohistochemistry examinations demonstrated the robust expression of the NE genes HRH1 and NSE/ENO2 in KSHV-infected KS tissue samples and KS visceral tissue microarrays. Further analysis demonstrated that KSHV latent open reading frame K12 (ORFK12) gene (kaposin A)-mediated decreased host REST/NRSF (RE1-silencing transcription factor/neuron-restrictive silencer factor) protein, a neuronal gene transcription repressor protein, is responsible for NE gene expression in infected endothelial cells. The NE gene expression observed in KSHV-infected cells was recapitulated in uninfected endothelial cells by the exogenous expression of ORFK12 and by the treatment of cells with the REST inhibitor X5050. When the neuroactive ligand-activating receptor HRH1 and inhibitory SSTR1 were knocked out by CRISPR, HRH1 knockout (KO) significantly inhibited cell proliferation, while SSTR1 KO induced cell proliferation, thus suggesting that HRH1 and SSTR1 probably counteract each other in regulating KSHV-infected endothelial cell proliferation. These results demonstrate that the similarity of KS lesion cells to neuroendocrine tumors is probably a result of KSHV infection-induced transformation of nonneuronal endothelial cells into cells with neuroendocrine features. These studies suggest a potential role of neuroendocrine pathway genes in the pathobiological characteristics of KSHV-infected endothelial cells, including a potential mechanism of escape from the host immune system by the expression of immunologically privileged neuronal-site NE genes, and NE genes could potentially serve as markers for KSHV-infected KS lesion endothelial cells as well as novel therapeutic targets to control KS lesions. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) manipulates several cellular pathways for its survival advantage during its latency in the infected human host. Here, we demonstrate that KSHV infection upregulates the expression of genes related to neuronal and neuroendocrine (NE) functions that are characteristic of NE tumors, both in vitro and in KS patient tissues and the heterogeneity of neuroendocrine receptors having opposing roles in KSHV-infected cell proliferation. Induction of NE genes by KSHV could also provide a potential survival advantage, as the expression of proteins at immunologically privileged sites such as neurons on endothelial cells may be an avenue to escape host immune surveillance functions. The NE gene products identified here could serve as markers for KSHV-infected cells and could potentially serve as therapeutic targets to combat KSHV-associated KS.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1186-1191 ◽  
Author(s):  
Marcelo G. Horenstein ◽  
Roland G. Nador ◽  
Amy Chadburn ◽  
Elizabeth M. Hyjek ◽  
Giorgio Inghirami ◽  
...  

Primary effusion (body cavity–based) lymphoma (PEL) is a recently recognized subtype of malignant lymphoma that exhibits distinctive clinical and biological features, most notably its usual infection with the Kaposi's sarcoma–associated herpesvirus (KSHV). The vast majority of cases also contain Epstein-Barr virus (EBV). This dual viral infection is the first example of a consistent dual herpesviral infection in a human neoplasm and provides a unique model to study viral interactions. We analyzed the pattern of EBV latent gene expression to determine the pathogenic role of this agent in PELs. We examined five PELs coinfected with EBV and KSHV by reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry. EBER1 mRNA, a consistent marker of viral latency, was positive in all PEL cases, although at lower levels than in the non-PEL controls due to EBER1 expression by only a variable subset of lymphoma cells. Qp-initiated mRNA, encoding only EBNA1 and characteristic of latencies I and II, was positive in all PEL cases. Wp- and Cp-initiated mRNAs, encoding all EBNAs and characteristic of latency III, were negative in all cases. LMP1 mRNA, expressed in latencies II and III, was present in three cases of PEL, although at very low levels that were not detectable at the protein level by immunohistochemistry. Low levels of LMP2A mRNA were detected in all cases. BZLF1, an early-intermediate lytic phase marker, was weakly positive in four cases, suggesting a productive viral infection in a very small proportion of cells, which was confirmed by ZEBRA antigen expression. Therefore, PELs exhibit a restricted latency pattern, with expression of EBNA1 in all cases, and low LMP1 and LMP2A levels.


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Angelica F. Castañeda ◽  
Britt A. Glaunsinger

ABSTRACTIn the beta- and gammaherpesviruses, a specialized complex of viral transcriptional activators (vTAs) coordinate to direct expression of virus-encoded late genes, which are critical for viral assembly and whose transcription initiates only after the onset of viral DNA replication. The vTAs in Kaposi’s sarcoma-associated herpesvirus (KSHV) are ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. While the general organization of the vTA complex has been mapped, the individual roles of these proteins and how they coordinate to activate late gene promoters remain largely unknown. Here, we performed a comprehensive mutational analysis of the conserved residues in ORF18, which is a highly interconnected vTA component. Surprisingly, the mutants were largely selective for disrupting the interaction with ORF30 but not the other three ORF18 binding partners. Furthermore, disrupting the ORF18-ORF30 interaction weakened the vTA complex as a whole, and an ORF18 point mutant that failed to bind ORF30 was unable to complement an ORF18 null virus. Thus, contacts between individual vTAs are critical as even small disruptions in this complex result in profound defects in KSHV late gene expression.IMPORTANCEKaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma and other B-cell cancers and remains a leading cause of death in immunocompromised individuals. A key step in the production of infectious virions is the transcription of viral late genes, which generates capsid and structural proteins and requires the coordination of six viral proteins that form a complex. The role of these proteins during transcription complex formation and the importance of protein-protein interactions are not well understood. Here, we focused on a central component of the complex, ORF18, and revealed that disruption of its interaction with even a single component of the complex (ORF30) prevents late gene expression and completion of the viral lifecycle. These findings underscore how individual interactions between the late gene transcription components are critical for both the stability and function of the complex.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Muzammel Haque ◽  
K. G. Kousoulas

ABSTRACTHypoxia and hypoxia inducible factors (HIFs) play important roles in the Kaposi’s sarcoma-associated herpesvirus (KSHV) life cycle. KSHV is the causative agent of Kaposi’s sarcoma (KS) and other AIDS-related malignancies. Kaposi’s sarcoma is a highly vascular tumor, which preferentially develops in the lower extremities of the body where blood vessels are often poorly oxygenated. The main cellular responses to hypoxia are mediated mainly by two isoforms of HIF, HIF-1α and HIF-2α. HIF-1α and HIF-2α have common as well as distinct functions, although they are similar in structure and function. Previously, we showed that the KSHV ORF34 protein binds HIF-1α and facilitates its degradation through the ubiquitin-proteasome pathway causing negative regulation of HIF-1α-dependent genes (Haque and Kousoulas, J Virol 87:2164-2173, 2013, https://www.doi.org/10.1128/JVI.02460-12). Herein, we show that theORF34gene is involved in the regulation of KSHV lytic gene expression, since deletion ofORF34resulted in reduced immediate early and early lytic gene expression and blocked late gene expression. Coimmunoprecipitation experiments revealed that the ORF34 protein physically interacted with HIF-2α in transfected as well as in KSHV-infected cells. Utilization of ORF34 truncations revealed that three distinct domains bind HIF-2α and that both bHLH and PAS domains of HIF-2α interacted with ORF34. Unlike HIF-1α, dose-dependent coexpression of ORF34 stabilized the HIF-2α protein, ensuring HIF-2α-dependent transcriptional activity. The ORF34 protein enhanced HIF-2α ubiquitination at the bHLH and PAS domains. The results show that the KSHV ORF34 protein is involved in the KSHV life cycle by regulating the expression of HIF-1α and HIF-2α proteins.IMPORTANCEHypoxia inducible factor 1α (HIF-1α) and HIF-2α are transcription factors which play important roles in the Kaposi’s sarcoma-associated herpesvirus (KSHV) latent and lytic gene replication. Herein, we show that theORF34gene is involved in the regulation of KSHV lytic gene expression, since deletion ofORF34resulted in reduced immediate early and early lytic gene expression and blocked late gene expression. In addition, we demonstrate that the KSHV ORF34 protein binds and stabilizes HIF-2α, in contrast to its role in binding HIF-1α and causing its degradation via the proteasome pathway. Thus, the KSHV ORF34 protein plays a regulatory role in the KSHV life cycle by regulating HIF-1α and HIF-2α expression.


2014 ◽  
Vol 89 (6) ◽  
pp. 3093-3111 ◽  
Author(s):  
Pravinkumar Purushothaman ◽  
Suhani Thakker ◽  
Subhash C. Verma

ABSTRACTKaposi's sarcoma-associated herpesvirus (KSHV) infects many target cells (e.g., endothelial, epithelial, and B cells, keratinocytes, and monocytes) to establish lifelong latent infections. Viral latent-protein expression is critical in inducing and maintaining KSHV latency. Infected cells are programmed to retain the incoming viral genomes during primary infection. Immediately after infection, KSHV transcribes many lytic genes that modulate various cellular pathways to establish successful infection. Analysis of the virion particle showed that the virions contain viral mRNAs, microRNAs, and other noncoding RNAs that are transduced into the target cells during infection, but their biological functions are largely unknown. We performed a comprehensive analysis of the KSHV virion packaged transcripts and the profiles of viral genes transcribed afterde novoinfections of various cell types (human peripheral blood mononuclear cells [PBMCs], CD14+monocytes, and telomerase-immortalized vascular endothelial [TIVE] cells), from viral entry until latency establishment. A next-generation sequence analysis of the total transcriptome showed that several viral RNAs (polyadenylated nuclear RNA, open reading frame 58 [ORF58], ORF59, T0.7, and ORF17) were abundantly present in the KSHV virions and effectively transduced into the target cells. Analysis of the transcription profiles of each viral gene showed specific expression patterns in different cell lines, with the majority of the genes, other than latent genes, silencing after 24 h postinfection. We differentiated the actively transcribing genes from the virion-transduced transcripts using a nascent RNA capture approach (Click-iT chemistry), which identified transcription of a number of viral genes during primary infection. Treating the infected cells with phosphonoacetic acid (PAA) to block the activity of viral DNA polymerase confirmed the involvement of lytic DNA replication during primary infection. To further understand the role of DNA replication during primary infection, we performedde novoPBMC infections with a recombinant ORF59-deleted KSHV virus, which showed significantly reduced numbers of viral copies in the latently infected cells. In summary, the transduced KSHV RNAs as well as the actively transcribed genes control critical processes of early infection to establish KSHV latency.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple human malignancies in immunocompromised individuals. KSHV establishes a lifelong latency in the infected host, during which only a limited number of viral genes are expressed. However, a fraction of latently infected cells undergo spontaneous reactivation to produce virions that infect the surrounding cells. These newly infected cells are primed early to retain the incoming viral genome and induce cell growth. KSHV transcribes a variety of lytic proteins duringde novoinfections that modulate various cellular pathways to establish the latent infection. Interestingly, a large number of viral proteins and RNA are encapsidated in the infectious virions and transduced into the infected cells during ade novoinfection. This study determined the kinetics of the viral gene expression duringde novoKSHV infections and the functional role of the incoming viral transcripts in establishing latency.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1186-1191 ◽  
Author(s):  
Marcelo G. Horenstein ◽  
Roland G. Nador ◽  
Amy Chadburn ◽  
Elizabeth M. Hyjek ◽  
Giorgio Inghirami ◽  
...  

Abstract Primary effusion (body cavity–based) lymphoma (PEL) is a recently recognized subtype of malignant lymphoma that exhibits distinctive clinical and biological features, most notably its usual infection with the Kaposi's sarcoma–associated herpesvirus (KSHV). The vast majority of cases also contain Epstein-Barr virus (EBV). This dual viral infection is the first example of a consistent dual herpesviral infection in a human neoplasm and provides a unique model to study viral interactions. We analyzed the pattern of EBV latent gene expression to determine the pathogenic role of this agent in PELs. We examined five PELs coinfected with EBV and KSHV by reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry. EBER1 mRNA, a consistent marker of viral latency, was positive in all PEL cases, although at lower levels than in the non-PEL controls due to EBER1 expression by only a variable subset of lymphoma cells. Qp-initiated mRNA, encoding only EBNA1 and characteristic of latencies I and II, was positive in all PEL cases. Wp- and Cp-initiated mRNAs, encoding all EBNAs and characteristic of latency III, were negative in all cases. LMP1 mRNA, expressed in latencies II and III, was present in three cases of PEL, although at very low levels that were not detectable at the protein level by immunohistochemistry. Low levels of LMP2A mRNA were detected in all cases. BZLF1, an early-intermediate lytic phase marker, was weakly positive in four cases, suggesting a productive viral infection in a very small proportion of cells, which was confirmed by ZEBRA antigen expression. Therefore, PELs exhibit a restricted latency pattern, with expression of EBNA1 in all cases, and low LMP1 and LMP2A levels.


Sign in / Sign up

Export Citation Format

Share Document