scholarly journals Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis

mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Pallavi Chandra ◽  
Li He ◽  
Matthew Zimmerman ◽  
Guozhe Yang ◽  
Stefan Köster ◽  
...  

ABSTRACT Macrophage activation involves metabolic reprogramming to support antimicrobial cellular functions. How these metabolic shifts influence the outcome of infection by intracellular pathogens remains incompletely understood. Mycobacterium tuberculosis (Mtb) modulates host metabolic pathways and utilizes host nutrients, including cholesterol and fatty acids, to survive within macrophages. We found that intracellular growth of Mtb depends on host fatty acid catabolism: when host fatty acid β-oxidation (FAO) was blocked chemically with trimetazidine, a compound in clinical use, or genetically by deletion of the mitochondrial fatty acid transporter carnitine palmitoyltransferase 2 (CPT2), Mtb failed to grow in macrophages, and its growth was attenuated in mice. Mechanistic studies support a model in which inhibition of FAO generates mitochondrial reactive oxygen species, which enhance macrophage NADPH oxidase and xenophagy activity to better control Mtb infection. Thus, FAO inhibition promotes key antimicrobial functions of macrophages and overcomes immune evasion mechanisms of Mtb. IMPORTANCE Mycobacterium tuberculosis (Mtb) is the leading infectious disease killer worldwide. We discovered that intracellular Mtb fails to grow in macrophages in which fatty acid β-oxidation (FAO) is blocked. Macrophages treated with FAO inhibitors rapidly generate a burst of mitochondria-derived reactive oxygen species, which promotes NADPH oxidase recruitment and autophagy to limit the growth of Mtb. Furthermore, we demonstrate the ability of trimetazidine to reduce pathogen burden in mice infected with Mtb. These studies will add to the knowledge of how host metabolism modulates Mtb infection outcomes.

2017 ◽  
Vol 85 (12) ◽  
Author(s):  
Josefine Hirschfeld ◽  
Phillipa C. White ◽  
Michael R. Milward ◽  
Paul R. Cooper ◽  
Iain L. C. Chapple

ABSTRACT Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii, stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lorissa J. Smulan ◽  
Nuria Martinez ◽  
Michael C. Kiritsy ◽  
Chido Kativhu ◽  
Kelly Cavallo ◽  
...  

ABSTRACT Mycobacterium tuberculosis induces metabolic reprogramming in macrophages like the Warburg effect. This enhances antimicrobial performance at the expense of increased inflammation, which may promote a pathogen-permissive host environment. Since the NAD+-dependent protein deacetylase Sirtuin 3 (SIRT3) is an important regulator of mitochondrial metabolism and cellular redox homeostasis, we hypothesized that SIRT3 modulation mediates M. tuberculosis-induced metabolic reprogramming. Infection of immortalized and primary murine macrophages resulted in reduced levels of SIRT3 mRNA and protein and perturbation of SIRT3-regulated enzymes in the tricarboxylic acid cycle, electron transport chain, and glycolytic pathway. These changes were associated with increased reactive oxygen species and reduced antioxidant scavenging, thereby triggering mitochondrial stress and macrophage cell death. Relevance to tuberculosis disease in vivo was indicated by greater bacterial burden and immune pathology in M. tuberculosis-infected Sirt3−/− mice. CD11b+ lung leukocytes isolated from infected Sirt3−/− mice showed decreased levels of enzymes involved in central mitochondrial metabolic pathways, along with increased reactive oxygen species. Bacterial burden was also greater in lungs of LysMcreSirt3L2/L2 mice, demonstrating the importance of macrophage-specific SIRT3 after infection. These results support the model of SIRT3 as a major upstream regulatory factor, leading to metabolic reprogramming in macrophages by M. tuberculosis. IMPORTANCE Tuberculosis, the disease caused by the bacterium M. tuberculosis, remains one of the top 10 causes of death worldwide. Macrophages, the first cells to encounter M. tuberculosis and critical for defense against infection, are hijacked by M. tuberculosis as a protected growth niche. M. tuberculosis-infected macrophages undergo metabolic reprogramming where key mitochondrial pathways are modulated, but the mechanisms driving this metabolic shift is unknown. Our study demonstrates that M. tuberculosis downregulates Sirtuin 3 (SIRT3), an important regulator of mitochondrial metabolism, leading to SIRT3-dependent transcriptional downregulation of mitochondrial metabolic proteins, which is followed by oxidative stress and macrophage necrosis. This study identifies SIRT3 modulation as a key event in M. tuberculosis-induced metabolic reprograming in macrophages that defend against tuberculosis.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2703
Author(s):  
Lars Kaiser ◽  
Isabel Quint ◽  
René Csuk ◽  
Manfred Jung ◽  
Hans-Peter Deigner

Exposure to ubiquitous endocrine-disrupting chemicals (EDCs) is a major public health concern. We analyzed the physiological impact of the EDC, di-2-ethylhexyl phthalate (DEHP), and found that its metabolite, mono-2-ethylhexyl phthalate (MEHP), had significant adverse effects on myeloid hematopoiesis at environmentally relevant concentrations. An analysis of the underlying mechanism revealed that MEHP promotes increases in reactive oxygen species (ROS) by reducing the activity of superoxide dismutase in all lineages, possibly via its actions at the aryl hydrocarbon receptor. This leads to a metabolic shift away from glycolysis toward the pentose phosphate pathway and ultimately results in the death of hematopoietic cells that rely on glycolysis for energy production. By contrast, cells that utilize fatty acid oxidation for energy production are not susceptible to this outcome due to their capacity to uncouple ATP production. These responses were also detected in non-hematopoietic cells exposed to alternate inducers of ROS.


Author(s):  
Lars Kaiser ◽  
Isabel Quint ◽  
René Csuk ◽  
Manfred Jung ◽  
Hans-Peter Deigner

AbstractEndocrine disrupting compounds (EDC) are ubiquitous in the human environment, displaying a highly relevant research topic. The impact of EDC on the differentiation of primitive cells, e.g. in hematopoiesis, is of particular interest. We found profound inhibitory effects of di-2-ethylhexyl phthalate (DEHP) on erythropoiesis and dendropoiesis, mediated via reactive oxygen species (ROS) generation. Neutrophil differentiation, however, was not affected by DEHP. ROS leads to a shift from glycolysis to the pentose phosphate pathway and diminishes ATP generation from glycolysis, ultimately resulting in apoptosis in both cell types. In neutrophils, ATP generation is held constant by active fatty acid oxidation (FAO), rendering these cells highly resistant against ROS. This relationship also holds true in HUVEC and HepG2 cells, also in combination with other organic peroxides. We, therefore, uncover a key mechanism for ROS quenching which further explains the distinct ROS quenching ability of different tissues.


Sign in / Sign up

Export Citation Format

Share Document