scholarly journals Expression of the Long Noncoding RNA DINO in Human Papillomavirus-Positive Cervical Cancer Cells Reactivates the Dormant TP53 Tumor Suppressor through ATM/CHK2 Signaling

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Surendra Sharma ◽  
Karl Munger

ABSTRACT Tumor cells overcome the cytostatic and cytotoxic restraints of TP53 tumor suppressor signaling through a variety of mechanisms. High-risk human papillomavirus (HPV)-positive tumor cells retain wild-type TP53 because the HPV E6/UBE3A ubiquitin ligase complex targets TP53 for proteasomal degradation. While restoration of TP53 in tumor cells holds great promise for cancer therapy, attempts to functionally restore the dormant TP53 tumor suppressor in HPV-positive cancer cells by inhibiting the HPV E6/UBE3A ubiquitin ligase complex have not yet been successful. The damage-induced long noncoding RNA, DINO (DINOL), is a TP53 transcriptional target that has been reported to bind to and stabilize TP53, thereby amplifying TP53 signaling. We show that HPV-positive cervical carcinoma cells contain low levels of DINO because of HPV E6/UBE3A-mediated TP53 degradation. Acute DINO expression overrides HPV16 E6/UBE3A-mediated TP53 degradation, causing TP53 stabilization and increased expression of TP53 transcriptional target genes. This causes a marked sensitization to chemotherapy agents and renders cells vulnerable to metabolic stress. Acute DINO expression in HPV-positive cervical cancer cells induces hallmarks of DNA damage response signaling, and TP53 activation involves ATM/CHK2 signaling. DINO upregulation in response to DNA damage is independent of ATM/CHK2 and can occur in cancer cells that express mutant TP53. IMPORTANCE Functional restoration of the TP53 tumor suppressor holds great promise for anticancer therapy. Current strategies are focused on modulating TP53 regulatory proteins. Long noncoding RNAs (lncRNAs) have emerged as important regulators of TP53 as well as modulators of downstream tumor-suppressive transcriptional responses. Unlike many other cancer types, human papillomavirus (HPV)-positive cancer cells retain wild-type TP53 that is rendered dysfunctional by the viral E6 protein. We show that acute expression of the damage-induced long noncoding RNA, DINO, a known TP53 transcriptional target and functional modulator, causes TP53 reactivation in HPV-positive cervical cancer cells. This causes increased vulnerability to standard chemotherapeutics as well as biguanide compounds that cause metabolic stress. Hence, strategies that target DINO may be useful for restoring TP53 tumor suppressor activity in HPV-positive cancers and other tumor types that retain wild-type TP53.

2020 ◽  
Author(s):  
Surendra Sharma ◽  
Karl Munger

ABSTRACTTumor cells overcome the cytostatic and cytotoxic restraints of TP53 tumor suppressor signaling through a variety of mechanisms. High-risk human papillomavirus (HPV) positive tumor cells retain wild type TP53 because the HPV E6/UBE3A ubiquitin ligase complex targets TP53 for proteasomal degradation. While restoration of TP53 in tumor cells holds great promise for cancer therapy, attempts to functionally restore the dormant TP53 tumor suppressor in HPV positive cancer cells by inhibiting the HPV E6/UBE3A ubiquitin ligase complex have not yet been successful. The Damage Induced long noncoding RNA, DINO, (DINOL) is a TP53 transcriptional target that has been reported to bind to and stabilize TP53, thereby amplifying TP53 signaling. We show that HPV positive cervical carcinoma cells contain low levels of DINO because of HPV E6/UBE3A mediated TP53 degradation. Acute DINO expression overrides HPV16 E6/UBE3A mediated TP53 degradation, causing TP53 stabilization and increased expression of TP53 transcriptional target genes. This causes a marked sensitization to chemotherapy agents and renders cells vulnerable to metabolic stress. Acute DINO expression in HPV positive cervical cancer cells induces hallmarks of DNA damage response signaling and TP53 activation involves ATM/CHK2 signaling. DINO upregulation in response to DNA damage is independent of ATM/CHK2 and can occur in cancer cells that express mutant TP53.IMPORTANCEFunctional restoration of the TP53 tumor suppressor holds great promise for anti-cancer therapy. Current strategies are focused on modulating TP53 regulatory proteins. Long noncoding RNAs (lncRNAs) have emerged as important regulators of TP53 as well as modulators of downstream tumor suppressive transcriptional responses. Unlike many other cancer types, human papillomavirus (HPV) positive cancer cells retain wild type TP53 that is rendered dysfunctional by the viral E6 protein. We show that acute expression of the Damage Induced long Noncoding RNA, DINO, a known TP53 transcriptional target and functional modulator, causes TP53 reactivation in HPV positive cervical cancer cells. This causes increased vulnerability to standard chemotherapeutics as well as biguanide compounds that cause metabolic stress. Hence, strategies that target DINO may be useful for restoring TP53 tumor suppressor activity in HPV positive cancers and other tumor types that retain wild type TP53.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Hongpeng He ◽  
Xiang Liu ◽  
Yue Liu ◽  
Mengmeng Zhang ◽  
Yongwei Lai ◽  
...  

ABSTRACT TMPOP2 was previously suggested to be an oncogenic long noncoding RNA which is excessively expressed in cervical cancer cells and inhibits E-cadherin gene expression by recruiting transcription repressor EZH2 to the gene promoter. So far, the function and regulation of TMPOP2 in cervical cancer remain largely unknown. Herein, we found that TMPOP2 expression was correlated with human papillomavirus 16/18 (HPV16/18) E6 and E7 in cervical cancer cell lines CaSki and HeLa. Tumor suppressor p53, which is targeted for degradation by HPV16/18, was demonstrated to associate with two p53 response elements in the TMPOP2 promoter to repress the transcription of the TMPOP2 gene. Reciprocally, ectopic expression of TMPOP2 was demonstrated to sequester tumor repressor microRNAs (miRNAs) miR-375 and miR-139 which target HPV16/18 E6/E7 mRNA and resulted in an upregulation of HPV16/18 E6/E7 genes. Thereby, HPV16/18 E6/E7 and the long noncoding RNA (lncRNA) TMPOP2 form a positive feedback loop to mutually derepress gene expression in cervical cancer cells. Moreover, results of RNA sequencing and cell cycle analysis showed that knockdown of TMPOP2 impaired the expression of cell cycle genes, induced cell cycle arrest, and inhibited HeLa cell proliferation. Together, our results indicate that TMPOP2 and HPV16/18 E6/E7 mutually strengthen their expression in cervical cancer cells to enhance tumorigenic activities. IMPORTANCE Human papillomaviruses 16 and 18 (HPV16/18) are the main causative agents of cervical cancer. Viral proteins HPV16/18 E6 and E7 are constitutively expressed in cancer cells to maintain oncogenic phenotypes. Accumulating evidences suggest that HPVs are correlated with the deregulation of long noncoding RNAs (lncRNAs) in cervical cancer, although the mechanism was unexplored in most cases. TMPOP2 is a newly identified lncRNA excessively expressed in cervical cancer. However, the mechanism for the upregulation of TMPOP2 in cervical cancer cells remains largely unknown and its relationship with HPVs is still elusive. The significance of our research is in revealing the mutual upregulation of HPV16/18 E6/E7 and TMPOP2 with the molecular mechanisms explored. This study will expand our understandings of the oncogenic activities of human papillomaviruses and lncRNAs.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Weiwei Yang ◽  
Xiaoyan Wang ◽  
Shujie Song ◽  
Yongli Chu ◽  
Dengjun Sun ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Joseph M. Bay ◽  
Bruce K. Patterson ◽  
Nelson N. H. Teng

The constitutive proliferation and resistance to differentiation and apoptosis of neoplastic cervical cells depend on sustained expression of human papillomavirus oncogenes. Inhibition of these oncogenes is a goal for the prevention of progression of HPV-induced neoplasias to cervical cancer. SiHa cervical cancer cells were transfected with an HPV-16 promoter reporter construct and treated with leukemia inhibitory factor (LIF), a human cytokine of the interleukin 6 superfamily. SiHa and CaSki cervical cancer cells were also assessed for proliferation by MTT precipitation, programmed cell death by flow cytometry, and HPV E6 and E7 expression by real-time PCR. LIF-treated cervical cancer cells showed significantly reduced HPV LCR activation, reduced levels of E6 and E7 mRNA, and reduced proliferation. We report the novel use of LIF to inhibit viral oncogene expression in cervical cancer cells, with concomitant reduction in proliferation suggesting re-engagement of cell-cycle regulation.


Sign in / Sign up

Export Citation Format

Share Document