scholarly journals Next-Generation High-Throughput Functional Annotation of Microbial Genomes

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Ralph S. Baric ◽  
Sean Crosson ◽  
Blossom Damania ◽  
Samuel I. Miller ◽  
Eric J. Rubin

ABSTRACT Host infection by microbial pathogens cues global changes in microbial and host cell biology that facilitate microbial replication and disease. The complete maps of thousands of bacterial and viral genomes have recently been defined; however, the rate at which physiological or biochemical functions have been assigned to genes has greatly lagged. The National Institute of Allergy and Infectious Diseases (NIAID) addressed this gap by creating functional genomics centers dedicated to developing high-throughput approaches to assign gene function. These centers require broad-based and collaborative research programs to generate and integrate diverse data to achieve a comprehensive understanding of microbial pathogenesis. High-throughput functional genomics can lead to new therapeutics and better understanding of the next generation of emerging pathogens by rapidly defining new general mechanisms by which organisms cause disease and replicate in host tissues and by facilitating the rate at which functional data reach the scientific community.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3019-3019
Author(s):  
Daniela Hoehn ◽  
Jordan M. Schecter ◽  
David Hirschberg ◽  
Cadhla Firth ◽  
Craig R Street ◽  
...  

Abstract Background Infectious etiologies have been established for a variety of lymphomas whereby viral, bacterial or ricketssial organisms can induce or promote lymphomagenesis either indirectly through antigen stimulation or by inflicting immune dysregulation or by directly infecting lymphocytes mimicking or co-opting signaling pathways leading to cellular transformation. EBV infection represents the most well studied pathogen that can directly infect lymphocytes, and induce neoplasia via cellular immortalization. An infectious etiology for a variety of EBV negative (EBV-) lymphoproliferative neoplasms/disorders, occurring in either immunocompromised or immunocompetent individuals has long been considered, but never been established. To investigate the possibility of novel lymphotropic pathogens as causative agents of lymphomagenesis, we used next-generation, high throughput sequencing (HTS) to analyze subsets of suspect T- and B-cell lymphomas for the presence of non-human genetic material. Methods Forty-nine lymphomas, representing 5 different entities were evaluated: 9 EBV- negative post-transplant lymphoproliferative disorders, monomorphic type (EBV- PTLD), 10 EBV-negative classical Hodgkin lymphomas (cHL), 10 peripheral T-cell lymphomas (PTCL), 10 marginal zone lymphomas (MZL) and 10 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL). Frozen sections of non-Hodgkin lymphoma tumor blocks were evaluated and samples with tumor representation >70% were selected for analysis. EBV status was determined by using in situ hybridization (ISH) for EBV encoded small RNAs (EBER). For next-generation sequencing, RNA (0.5 µg) was extracted from frozen tumors, DNase I digested (DNA-free; Ambion, Austin, TX) and reverse transcribed using Superscript II kit (Invitrogen) with random octamer primers (MWG, Huntsville, AL). The cDNA was RNase H treated prior to random amplification by PCR. Products of 70 bp were purified (MinElute, Qiagen) and ligated to linkers for sequencing using a GS FLX sequencer (454 Life Sciences, Branford, CT). Primer sequences were removed, followed by multiple filtering steps and sequences obtained were compared with those of known infectious agents using software available at the BLAST website (www.ncbi.nlm.nih.gov/BLAST). Results Sequencing was successful in 46 cases. Microbial sequences were detected in 5 specimens (9%). In the remaining 41 cases, including all EBV- PTLDs and cHLs no non-human genetic material was identified. Human herpes virus 4 (EBV) was detected in one PTCL harboring an EBV+ B-cell lymphoma which embodied 20% of the total tumor mass in the specimen (as evaluated by ISH). EBV sequences were not detected in 4 other PTCL exhibiting EBV+ B-cells (range 1-10% involvement by ISH). These 4 cases represented angioimmunoblastic T-cell lymphomas. Human immunodeficiency virus -1 sequences (HIV) were detected in a lung MZL occurring in a known HIV+ patient. Sequences corresponding to propionebacterium sp., tetracyclin resistant streptococcus sp. and acinetobacter sp., were identified in one case each: MZL, EBV-PTLD and CLL; and were considered contaminants, likely acquired during biopsy procurement. Conclusion No novel lymphotropic microbial pathogens were identified in non-EBV associated T- and B-cell lymphoproliferations. Our findings argue against a clonal infectious etiology, which has previously been hypothesized for subsets of the lymphomas analyzed. Inability in detecting EBV sequences in samples containing low levels of EBV infected cells, suggests that this methodology might not be suitable for investigating lymphoproliferations with low tumor burden (e.g. cHL) or those arising as a consequence of chronic antigen stimulation due to a low-frequency intratumoral microbial pathogens (e.g. MZL). Further studies in a larger cohort of lymphoproliferative neoplasms will be helpful to further validate our results. Disclosures: Schecter: Seattle Genetics: Honoraria, Research Funding.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoxiang Hu ◽  
Xiaolei Liu ◽  
Chen Li ◽  
Yulu Zhang ◽  
Chengyao Li ◽  
...  

Abstract Background Parasites of the genus Trichinella are the pathogenic agents of trichinellosis, which is a widespread and severe foodborne parasitic disease. Trichinella spiralis resides primarily in mammalian skeletal muscle cells. After invading the cells of the host organism, T. spiralis must elude or invalidate the host’s innate and adaptive immune responses to survive. It is necessary to characterize the pathogenesis of trichinellosis to help to prevent the occurrence and further progression of this disease. The aims of this study were to elucidate the mechanisms of nurse cell formation, pathogenesis and immune evasion of T. spiralis, to provide valuable information for further research investigating the basic cell biology of Trichinella-infected muscle cells and the interaction between T. spiralis and its host. Methods We performed transcriptome profiling by RNA sequencing to identify global changes at 1, 3, 7, 10 and 15 days post-infection (dpi) in gene expression in the diaphragm after the parasite entered and persisted within the murine myocytes; the mice were infected by intravenous injection of newborn larvae. Gene expression analysis was based on the alignment results. Differentially expressed genes (DEGs) were identified based on their expression levels in various samples, and functional annotation and enrichment analysis were performed. Results The most extensive and dynamic gene expression responses in host diaphragms were observed during early infection (1 dpi). The number of DEGs and genes annotated in the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases decreased significantly in the infected mice compared to the uninfected mice at 3 and 7 dpi, suddenly increased sharply at 10 dpi, and then decreased to a lower level at 15 dpi, similar to that observed at 3 and 7 dpi. The massive initial reaction of the murine muscle cells to Trichinella infection steadied in the later stages of infection, with little additional changes detected for the remaining duration of the studied process. Although there were hundreds of DEGs at each time point, only 11 genes were consistently up- or downregulated at all 5 time points. Conclusions The gene expression patterns identified in this study can be employed to characterize the coordinated response of T. spiralis-infected myocytes in a time-resolved manner. This comprehensive dataset presents a distinct and sensitive picture of the interaction between host and parasite during intracellular infection, which can help to elucidate how pathogens evade host defenses and coordinate the biological functions of host cells to survive in the mammalian environment.


2016 ◽  
Vol 106 (10) ◽  
pp. 1231-1239 ◽  
Author(s):  
Vincent N. Fondong ◽  
Ugrappa Nagalakshmi ◽  
Savithramma P. Dinesh-Kumar

Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat–associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.


2014 ◽  
Vol 60 (1) ◽  
pp. S324
Author(s):  
M. Mukaide ◽  
M. Sugiyama ◽  
M. Korenaga ◽  
K. Murata ◽  
T. Kanto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document