scholarly journals Mycobacterium tuberculosis Alters the Metalloprotease Activity of the COP9 Signalosome

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Lia Danelishvili ◽  
Lmar Babrak ◽  
Sasha J. Rose ◽  
Jamie Everman ◽  
Luiz E. Bermudez

ABSTRACT Inhibition of apoptotic death of macrophages by Mycobacterium tuberculosis represents an important mechanism of virulence that results in pathogen survival both in vitro and in vivo. To identify M. tuberculosis virulence determinants involved in the modulation of apoptosis, we previously screened a transposon bank of mutants in human macrophages, and an M. tuberculosis clone with a nonfunctional Rv3354 gene was identified as incompetent to suppress apoptosis. Here, we show that the Rv3354 gene encodes a protein kinase that is secreted within mononuclear phagocytic cells and is required for M. tuberculosis virulence. The Rv3354 effector targets the metalloprotease (JAMM) domain within subunit 5 of the COP9 signalosome (CSN5), resulting in suppression of apoptosis and in the destabilization of CSN function and regulatory cullin-RING ubiquitin E3 enzymatic activity. Our observation suggests that alteration of the metalloprotease activity of CSN by Rv3354 possibly prevents the ubiquitin-dependent proteolysis of M. tuberculosis-secreted proteins. IMPORTANCE Macrophage protein degradation is regulated by a protein complex called a signalosome. One of the signalosomes associated with activation of ubiquitin and protein labeling for degradation was found to interact with a secreted protein from M. tuberculosis, which binds to the complex and inactivates it. The interference with the ability to inactivate bacterial proteins secreted in the phagocyte cytosol may have crucial importance for bacterial survival within the phagocyte.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Lia Danelishvili ◽  
Natalia Shulzhenko ◽  
Jessica J. J. Chinison ◽  
Lmar Babrak ◽  
Jialu Hu ◽  
...  

ABSTRACTTuberculosis (TB) continues to be one of the most common bacterial infectious diseases and is the leading cause of death in many parts of the world. A major limitation of TB therapy is slow killing of the infecting organism, increasing the risk for the development of a tolerance phenotype and drug resistance. Studies indicate thatMycobacterium tuberculosistakes several days to be killed upon treatment with lethal concentrations of antibiotics bothin vitroandin vivo. To investigate how metabolic remodeling can enable transient bacterial survival during exposure to bactericidal concentrations of compounds,M. tuberculosisstrain H37Rv was exposed to twice the MIC of isoniazid, rifampin, moxifloxacin, mefloquine, or bedaquiline for 24 h, 48 h, 4 days, and 6 days, and the bacterial proteomic response was analyzed using quantitative shotgun mass spectrometry. Numerous sets ofde novobacterial proteins were identified over the 6-day treatment. Network analysis and comparisons between the drug treatment groups revealed several shared sets of predominant proteins and enzymes simultaneously belonging to a number of diverse pathways. Overexpression of some of these proteins in the nonpathogenicMycobacterium smegmatisextended bacterial survival upon exposure to bactericidal concentrations of antimicrobials, and inactivation of some proteins inM. tuberculosisprevented the pathogen from escaping the fast killingin vitroand in macrophages, as well. Our biology-driven approach identified promising bacterial metabolic pathways and enzymes that might be targeted by novel drugs to reduce the length of tuberculosis therapy.



2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Seong Won Choi ◽  
Yuexi Gu ◽  
Ryan Scott Peters ◽  
Padmini Salgame ◽  
Jerrold J. Ellner ◽  
...  

ABSTRACT Host-directed therapy in tuberculosis is a potential adjunct to antibiotic chemotherapy directed at Mycobacterium tuberculosis. Ambroxol, a lead compound, emerged from a screen for autophagy-inducing drugs. At clinically relevant doses, ambroxol induced autophagy in vitro and in vivo and promoted mycobacterial killing in macrophages. Ambroxol also potentiated rifampin activity in a murine tuberculosis model.



2015 ◽  
Vol 59 (8) ◽  
pp. 4446-4452 ◽  
Author(s):  
Vadim Makarov ◽  
João Neres ◽  
Ruben C. Hartkoorn ◽  
Olga B. Ryabova ◽  
Elena Kazakova ◽  
...  

ABSTRACT8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2′-oxidase (DprE1) and display nanomolar bactericidal activity againstMycobacterium tuberculosisin vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 μg/ml againstM. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 μM and present favorablein vitroabsorption-distribution-metabolism-excretion/toxicity (ADME/T) andin vivopharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.



2014 ◽  
Vol 58 (6) ◽  
pp. 3312-3326 ◽  
Author(s):  
B. K. Kishore Reddy ◽  
Sudhir Landge ◽  
Sudha Ravishankar ◽  
Vikas Patil ◽  
Vikas Shinde ◽  
...  

ABSTRACTPantothenate kinase (PanK) catalyzes the phosphorylation of pantothenate, the first committed and rate-limiting step toward coenzyme A (CoA) biosynthesis. In our earlier reports, we had established that the type I isoform encoded by thecoaAgene is an essential pantothenate kinase inMycobacterium tuberculosis, and this vital information was then exploited to screen large libraries for identification of mechanistically different classes of PanK inhibitors. The present report summarizes the synthesis and expansion efforts to understand the structure-activity relationships leading to the optimization of enzyme inhibition along with antimycobacterial activity. Additionally, we report the progression of two distinct classes of inhibitors, the triazoles, which are ATP competitors, and the biaryl acetic acids, with a mixed mode of inhibition. Cocrystallization studies provided evidence of these inhibitors binding to the enzyme. This was further substantiated with the biaryl acids having MIC against the wild-typeM. tuberculosisstrain and the subsequent establishment of a target link with an upshift in MIC in a strain overexpressing PanK. On the other hand, the ATP competitors had cellular activity only in aM. tuberculosisknockdown strain with reduced PanK expression levels. Additionally,in vitroandin vivosurvival kinetic studies performed with aM. tuberculosisPanK (MtPanK) knockdown strain indicated that the target levels have to be significantly reduced to bring in growth inhibition. The dual approaches employed here thus established the poor vulnerability of PanK inM. tuberculosis.



2012 ◽  
Vol 195 (2) ◽  
pp. 389-398 ◽  
Author(s):  
M. F. F. Arnold ◽  
A. F. Haag ◽  
S. Capewell ◽  
H. I. Boshoff ◽  
E. K. James ◽  
...  

ABSTRACTTheSinorhizobium melilotiBacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). TheMycobacterium tuberculosisBacA homolog was found to be important for the maintenance of chronic murine infections, yet itsin vivofunction is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that theM. tuberculosisBacA protein was able to partially complement the symbiotic defect of anS. melilotiBacA-deficient mutant on alfalfa plants and to protect this mutantin vitrofrom the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using anM. tuberculosisinsertion mutant. Furthermore,M. tuberculosisBacA-mediated protection of the legume symbiontS. melilotiagainst legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show thatM. tuberculosisBacA mediates peptide uptake of the truncated bovine AMP, Bac71-16. This process required a functional ATPase domain. We therefore suggest thatM. tuberculosisBacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.



2013 ◽  
Vol 57 (10) ◽  
pp. 5138-5140 ◽  
Author(s):  
Shichun Lun ◽  
Haidan Guo ◽  
John Adamson ◽  
Justin S. Cisar ◽  
Tony D. Davis ◽  
...  

ABSTRACTMycobactin biosynthesis inMycobacterium tuberculosisfacilitates iron acquisition, which is required for growth and virulence. The mycobactin biosynthesis inhibitor salicyl-AMS [5′-O-(N-salicylsulfamoyl)adenosine] inhibitsM. tuberculosisgrowthin vitrounder iron-limited conditions. Here, we conducted a single-dose pharmacokinetic study and a monotherapy study of salicyl-AMS with mice. Intraperitoneal injection yielded much better pharmacokinetic parameter values than oral administration did. Monotherapy of salicyl-AMS at 5.6 or 16.7 mg/kg significantly inhibitedM. tuberculosisgrowth in the mouse lung, providing the firstin vivoproof of concept for this novel antibacterial strategy.



2011 ◽  
Vol 56 (2) ◽  
pp. 731-738 ◽  
Author(s):  
Mary A. De Groote ◽  
Veronica Gruppo ◽  
Lisa K. Woolhiser ◽  
Ian M. Orme ◽  
Janet C. Gilliland ◽  
...  

ABSTRACTIn preclinical testing of antituberculosis drugs, laboratory-adapted strains ofMycobacterium tuberculosisare usually used both forin vitroandin vivostudies. However, it is unknown whether the heterogeneity ofM. tuberculosisstocks used by various laboratories can result in different outcomes in tests of antituberculosis drug regimens in animal infection models. In head-to-head studies, we investigated whether bactericidal efficacy results in BALB/c mice infected by inhalation with the laboratory-adapted strains H37Rv and Erdman differ from each other and from those obtained with clinical tuberculosis strains. Treatment of mice consisted of dual and triple drug combinations of isoniazid (H), rifampin (R), and pyrazinamide (Z). The results showed that not all strains gave the samein vivoefficacy results for the drug combinations tested. Moreover, the ranking of HRZ and RZ efficacy results was not the same for the two H37Rv strains evaluated. The magnitude of this strain difference also varied between experiments, emphasizing the risk of drawing firm conclusions for human trials based on single animal studies. The results also confirmed that the antagonism seen within the standard HRZ regimen by some investigators appears to be anM. tuberculosisstrain-specific phenomenon. In conclusion, the specific identity ofM. tuberculosisstrain used was found to be an important variable that can change the apparent outcome ofin vivoefficacy studies in mice. We highly recommend confirmation of efficacy results in late preclinical testing against a differentM. tuberculosisstrain than the one used in the initial mouse efficacy study, thereby increasing confidence to advance potent drug regimens to clinical trials.



2015 ◽  
Vol 59 (8) ◽  
pp. 4457-4463 ◽  
Author(s):  
Benoit Lechartier ◽  
Stewart T. Cole

ABSTRACTClofazimine (CZM) is an antileprosy drug that was recently repurposed for treatment of multidrug-resistant tuberculosis. InMycobacterium tuberculosis, CZM appears to act as a prodrug, which is reduced by NADH dehydrogenase (NDH-2), to release reactive oxygen species upon reoxidation by O2. CZM presumably competes with menaquinone (MK-4), a key cofactor in the mycobacterial electron transfer chain, for its reduction by NDH-2. We studied the effect of MK-4 supplementation on the activity of CZM againstM. tuberculosisand found direct competition between CZM and MK-4 for the cidal effect of CZM, against nonreplicating and actively growing bacteria, as MK-4 supplementation blocked the drug's activity against nonreplicating bacteria. We demonstrated that CZM, like bedaquiline, is synergisticin vitrowith benzothiazinones such as 2-piperazino-benzothiazinone 169 (PBTZ169), and this synergy also occurs against nonreplicating bacteria. The synergy between CZM and PBTZ169 was lost in an MK-4-rich medium, indicating that MK-4 is the probable link between their activities. The efficacy of the dual combination of CZM and PBTZ169 was testedin vivo, where a great reduction in bacterial load was obtained in a murine model of chronic tuberculosis. Taken together, these data confirm the potential of CZM in association with PBTZ169 as the basis for a new regimen against drug-resistant strains ofM. tuberculosis.



2014 ◽  
Vol 59 (1) ◽  
pp. 136-144 ◽  
Author(s):  
A. M. Upton ◽  
S. Cho ◽  
T. J. Yang ◽  
Y. Kim ◽  
Y. Wang ◽  
...  

ABSTRACTNitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 againstMycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidalin vitroagainst replicating and nonreplicatingMycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity againstMycobacterium tuberculosisH37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7.In vitrostudies andin vivostudies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life.In vitrostudies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependentin vivobactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole.



2020 ◽  
Vol 295 (27) ◽  
pp. 9192-9210 ◽  
Author(s):  
Kuldeep Sachdeva ◽  
Manisha Goel ◽  
Malvika Sudhakar ◽  
Mansi Mehta ◽  
Rajmani Raju ◽  
...  

Intracellular pathogens commonly manipulate the host lysosomal system for their survival. However, whether this pathogen-induced alteration affects the organization and functioning of the lysosomal system itself is not known. Here, using in vitro and in vivo infections and quantitative image analysis, we show that the lysosomal content and activity are globally elevated in Mycobacterium tuberculosis (Mtb)-infected macrophages. We observed that this enhanced lysosomal state is sustained over time and defines an adaptive homeostasis in the infected macrophage. Lysosomal alterations are caused by mycobacterial surface components, notably the cell wall-associated lipid sulfolipid-1 (SL-1), which functions through the mTOR complex 1 (mTORC1)–transcription factor EB (TFEB) axis in the host cells. An Mtb mutant lacking SL-1, MtbΔpks2, shows attenuated lysosomal rewiring compared with the WT Mtb in both in vitro and in vivo infections. Exposing macrophages to purified SL-1 enhanced the trafficking of phagocytic cargo to lysosomes. Correspondingly, MtbΔpks2 exhibited a further reduction in lysosomal delivery compared with the WT. Reduced trafficking of this mutant Mtb strain to lysosomes correlated with enhanced intracellular bacterial survival. Our results reveal that global alteration of the host lysosomal system is a defining feature of Mtb-infected macrophages and suggest that this altered lysosomal state protects host cell integrity and contributes to the containment of the pathogen.



Sign in / Sign up

Export Citation Format

Share Document