scholarly journals Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor

Author(s):  
Toshiyuki Ueki ◽  
David J. F. Walker ◽  
Kelly P. Nevin ◽  
Joy E. Ward ◽  
Trevor L. Woodard ◽  
...  

Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Elucidating the phenotypes associated with gene deletions is an important strategy for determining the mechanisms for extracellular electron transfer in G. sulfurreducens .

mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Jonathan P. Badalamenti ◽  
Rosa Krajmalnik-Brown ◽  
César I. Torres

ABSTRACTAnode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity ofGeobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the highest-current-producing member documented for theGeobacteraceaefamily of theDeltaproteobacteria. Here we report high current densities generated by haloalkaliphilicGeoalkalibacterspp., thus broadening the capability for high anode respiration rates by including other genera within theGeobacteraceae. In this study, acetate-fed pure cultures of two relatedGeoalkalibacterspp. produced current densities of 5.0 to 8.3 and 2.4 to 3.3 A m−2under alkaline (pH 9.3) and saline (1.7% NaCl) conditions, respectively. Chronoamperometric studies of halophilicGlk. subterraneusDSM 23483 and alkaliphilicGlk. ferrihydriticusDSM 17813 suggested that cells performed long-range electron transfer through electrode-attached biofilms and not through soluble electron shuttles.Glk. ferrihydriticusalso oxidized ethanol directly to produce current, with maximum current densities of 5.7 to 7.1 A m−2and coulombic efficiencies of 84 to 95%. Cyclic voltammetry (CV) elicited a sigmoidal response with characteristic onset, midpoint, and saturation potentials, while CV performed in the absence of an electron donor suggested the involvement of redox molecules in the biofilm that were limited by diffusion. These results matched those previously reported for actively respiringGb. sulfurreducensbiofilms producing similar current densities (~5 to 9 A m−2).IMPORTANCEThis study establishes the highest current densities ever achieved by pure cultures of anode-respiring bacteria (ARB) under alkaline and saline conditions in microbial electrochemical cells (MXCs) and provides the first electrochemical characterization of the genusGeoalkalibacter. Production of high current densities among theGeobacteraceaeis no longer exclusive toGeobacter sulfurreducens, suggesting greater versatility for this family in fundamental and applied microbial electrochemical cell (MXC) research than previously considered. Additionally, this work raises the possibility that different members of theGeobacteraceaehave conserved molecular mechanisms governing respiratory extracellular electron transfer to electrodes. Thus, the capacity for high current generation may exist in other uncultivated members of this family. Advancement of MXC technology for practical uses must rely on an expanded suite of ARB capable of using different electron donors and producing high current densities under various conditions.Geoalkalibacterspp. can potentially broaden the practical capabilities of MXCs to include energy generation and waste treatment under expanded ranges of salinity and pH.


Author(s):  
Takashi Fujikawa ◽  
Yoshitoshi Ogura ◽  
Koki Ishigami ◽  
Yoshihiro Kawano ◽  
Miyuki Nagamine ◽  
...  

Abstract Geobacter sulfurreducens produces high current densities and it has been used as a model organism for extracellular electron transfer studies. Nine G. sulfurreducens strains were isolated from biofilms formed on an anode poised at –0.2 V (vs. SHE) in a bioelectrochemical system in which river sediment was used as an inoculum. The maximum current density of an isolate, strain YM18 (9.29 A/m2), was higher than that of the strains PCA (5.72 A/m2), the type strain of G. sulfurreducens, and comparable to strain KN400 (8.38 A/m2), which is another high current producing strain of G. sulfurreducens. Genomic comparison of strains PCA, KN400, and YM18 revealed that omcB, xapD, spc, and ompJ, which are known to be important genes for iron reduction and current production in PCA, were not present in YM18. In the PCA and KN400 genomes, two and one region (s) encoding CRISPR/Cas systems were identified, respectively, but they were missing in the YM18 genome. These results indicate that there is genetic variation in the key components involved in extracellular electron transfer among G. sulfurreducens strains.


2020 ◽  
Author(s):  
Shiyan Zhuo ◽  
Guiqin Yang ◽  
Li Zhuang

AbstractElectrically conductive pili (e-pili) enable electron transport over multiple cell lengths to extracellular environments and play an important role in extracellular electron transfer (EET) of Geobacter species. To date, the studies of e-pili have mainly focused on Geobacter sulfurreducens and the closely related Geobacter metallireducens because of their developed genetic manipulation systems. We investigated the role of G. soli pili in EET by directly deleting the pilin gene, pilA, which is predicted to encode e-pili. Deletion of pilA, prevented the production of pili, resulting in poor Fe(III) oxide reduction and low current production, implying that G. soli pili is required for EET. To further evaluate the conductivity of G. soli pili compared with G. sulfurreducens pili, the pilA of G. soli was heterologously expressed in G. sulfurreducens, yielding the G. sulfurreducens strain GSP. This strain produced abundant pili with similar conductivity to the control strain that expressed native G. sulfurreducens pili, consistent with G. soli as determined by direct measurement, which suggested that G. soli pili is electrically conductive. Surprisingly, strain GSP was deficient in Fe(III) oxide reduction and current production due to the impaired content of outer-surface c-type cytochromes. These results demonstrated that heterologous pili of G. sulfurreducens severely reduces the content of outer-surface c-type cytochromes and consequently eliminates the capacity for EET, which strongly suggests an attention should be paid to the content of c-type cytochromes when employing G. sulfurreducens to heterologously express pili from other microorganisms.IMPORTANCEThe studies of electrically conductive pili (e-pili) of Geobacter species are of interest because of its application prospects in electronic materials. e-Pili are considered a substitution for electronic materials due to its renewability, biodegradability and robustness. Continued exploration of additional e-pili of Geobacter soli will improve the understanding of their biological role in extracellular electron transfer and expand the range of available electronic materials. Heterologously expressing the pilin genes from phylogenetically diverse microorganisms has been proposed as an emerging approach to screen potential e-pili according to high current densities. However, our results indicated that a Geobacter sulfurreducens strain heterologously expressing a pilin gene produced low current densities that resulted from a lack of content of c-type cytochromes, which were likely to possess e-pili. These results provide referential significance to yield e-pili from diverse microorganisms.


2021 ◽  
Author(s):  
Xinying Liu ◽  
David Jeffrey Fraser Walker ◽  
Stephen Nonnenmann ◽  
Dezhi Sun ◽  
Derek R. Lovley

Geobacter sulfurreducens is a model microbe for elucidating the mechanisms for extracellular electron transfer in several biogeochemical cycles, bioelectrochemical applications, and microbial metal corrosion. Multiple lines of evidence previously suggested that electrically conductive pili (e-pili) are an essential conduit for long-range extracellular electron transport in G. sulfurreducens. However, it has recently been reported that G. sulfurreducens does not express e-pili and that filaments comprised of multi-heme c-type cytochromes are responsible for long-range electron transport. This possibility was directly investigated by examining cells, rather than filament preparations, with atomic force microscopy. Approximately 90 % of the filaments emanating from wild-type cells had a diameter (3 nm) and conductance consistent with previous reports of e-pili harvested from G. sulfurreducens or heterologously expressed in E. coli from the G. sulfurreducens pilin gene. The remaining 10% of filaments had a morphology consistent with filaments comprised of the c-type cytochrome OmcS. A strain expressing a modified pilin gene designed to yield poorly conductive pili expressed 90 % filaments with a 3 nm diameter, but greatly reduced conductance, further indicating that the 3 nm diameter conductive filaments in the wild-type strain were e-pili. A strain in which genes for five of the most abundant outer-surface c-type cytochromes, including OmcS, was deleted yielded only 3 nm diameter filaments with the same conductance as in the wild-type. These results demonstrate that e-pili are the most abundant conductive filaments expressed by G. sulfurreducens, consistent with previous functional studies demonstrating the need for e-pili for long-range extracellular electron transfer.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Lucie Semenec ◽  
Ismael A. Vergara ◽  
Andrew E. Laloo ◽  
Steve Petrovski ◽  
Philip L. Bond ◽  
...  

ABSTRACT Interactions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa coculture change in their dynamics over evolutionary time. Specifically, Geobacter sp. dominance increases with adaptation within the cocultures, as determined through quantitative PCR and fluorescence in situ hybridization. This suggests a transition from syntrophy to competition and demonstrates the rapid adaptive capacity of Geobacter spp. to dominate in cocultures with P. aeruginosa. Early in coculture establishment, two single-nucleotide variants in the G. sulfurreducens fabI and tetR genes emerged that were strongly selected for throughout coculture evolution with P. aeruginosa phenazine wild-type and phenazine-deficient mutants. Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) proteomics revealed that the tetR variant cooccurred with the upregulation of an adenylate cyclase transporter, CyaE, and a resistance-nodulation-division (RND) efflux pump notably known for antibiotic efflux. To determine whether antibiotic production was driving the increased expression of the multidrug efflux pump, we tested Pseudomonas-derived phenazine-1-carboxylic acid (PHZ-1-CA) for its potential to inhibit Geobacter growth and drive selection of the tetR and fabI genetic variants. Despite its inhibitory properties, PHZ-1-CA did not drive variant selection, indicating that other antibiotics may drive overexpression of the efflux pump and CyaE or that a novel role exists for these proteins in the context of this interaction. IMPORTANCE Geobacter and Pseudomonas spp. cohabit many of the same environments, where Geobacter spp. often dominate. Both bacteria are capable of extracellular electron transfer (EET) and play important roles in biogeochemical cycling. Although they recently in 2017 were demonstrated to undergo direct interspecies electron transfer (DIET) with one another, the genetic evolution of this syntrophic interaction has not been examined. Here, we use whole-genome sequencing of the cocultures before and after adaptive evolution to determine whether genetic selection is occurring. We also probe their interaction on a temporal level and determine whether their interaction dynamics change over the course of adaptive evolution. This study brings to light the multifaceted nature of interactions between just two microorganisms within a controlled environment and will aid in improving metabolic models of microbial communities comprising these two bacteria.


2020 ◽  
Vol 202 (7) ◽  
Author(s):  
Lars J. C. Jeuken ◽  
Kiel Hards ◽  
Yoshio Nakatani

ABSTRACT Exoelectrogens are able to transfer electrons extracellularly, enabling them to respire on insoluble terminal electron acceptors. Extensively studied exoelectrogens, such as Geobacter sulfurreducens and Shewanella oneidensis, are Gram negative. More recently, it has been reported that Gram-positive bacteria, such as Listeria monocytogenes and Enterococcus faecalis, also exhibit the ability to transfer electrons extracellularly, although it is still unclear whether this has a function in respiration or in redox control of the environment, for instance, by reducing ferric iron for iron uptake. In this issue of Journal of Bacteriology, Hederstedt and colleagues report on experiments that directly compare extracellular electron transfer (EET) pathways for ferric iron reduction and respiration and find a clear difference (L. Hederstedt, L. Gorton, and G. Pankratova, J Bacteriol 202:e00725-19, 2020, https://doi.org/10.1128/JB.00725-19), providing further insights and new questions into the function and metabolic pathways of EET in Gram-positive bacteria.


2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Adolf Krige ◽  
Kerstin Ramser ◽  
Magnus Sjöblom ◽  
Paul Christakopoulos ◽  
Ulrika Rova

ABSTRACT Geobacter sulfurreducens is a good candidate as a chassis organism due to its ability to form thick, conductive biofilms, enabling long-distance extracellular electron transfer (EET). Due to the complexity of EET pathways in G. sulfurreducens, a dynamic approach is required to study genetically modified EET rates in the biofilm. By coupling online resonance Raman microscopy with chronoamperometry, we were able to observe the dynamic discharge response in the biofilm’s cytochromes to an increase in anode voltage. Measuring the heme redox state alongside the current allows for the fitting of a dynamic model using the current response and a subsequent validation of the model via the value of a reduced cytochrome c Raman peak. The modeled reduced cytochromes closely fitted the Raman response data from the G. sulfurreducens wild-type strain, showing the oxidation of heme groups in cytochromes until a new steady state was achieved. Furthermore, the use of a dynamic model also allows for the calculation of internal rates, such as acetate and NADH consumption rates. The Raman response of a mutant lacking OmcS showed a higher initial oxidation rate than predicted, followed by an almost linear decrease of the reduced mediators. The increased initial rate could be attributed to an increase in biofilm conductivity, previously observed in biofilms lacking OmcS. One explanation for this is that OmcS acts as a conduit between cytochromes; therefore, deleting the gene restricts the rate of electron transfer to the extracellular matrix. This could, however, be modeled assuming a linear oxidation rate of intercellular mediators. IMPORTANCE Bioelectrochemical systems can fill a vast array of application niches, due to the control of redox reactions that it offers. Although native microorganisms are preferred for applications such as bioremediation, more control is required for applications such as biosensors or biocomputing. The development of a chassis organism, in which the EET is well defined and readily controllable, is therefore essential. The combined approach in this work offers a unique way of monitoring and describing the reaction kinetics of a G. sulfurreducens biofilm, as well as offering a dynamic model that can be used in conjunction with applications such as biosensors.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Caleb E. Levar ◽  
Chi Ho Chan ◽  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTDissimilatory metal-reducing bacteria, such asGeobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption ofimcH, encoding an inner membranec-type cytochrome, eliminated the ability ofG. sulfurreducensto reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but theimcHmutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. TheimcHmutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and theimcHmutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not triggerimcHmutant growth. These results demonstrate thatG. sulfurreducenspossesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments whereGeobacteris found.IMPORTANCEInsoluble metal oxides in the environment represent a common and vast reservoir of energy for respiratory microbes capable of transferring electrons across their insulating membranes to external acceptors, a process termed extracellular electron transfer. Despite the global biogeochemical importance of metal cycling and the ability of such organisms to produce electricity at electrodes, fundamental gaps in the understanding of extracellular electron transfer biochemistry exist. Here, we describe a conserved inner membrane redox protein inGeobacter sulfurreducenswhich is required only for electron transfer to high-potential compounds, and we show thatG. sulfurreducenshas the ability to utilize different electron transfer pathways in response to the amount of energy available in a metal or electrode distant from the cell.


Author(s):  
Toshiyuki Ueki

Extracellular electron transfer (EET) is an important biological process in microbial physiology as found in dissimilatory metal oxidation/reduction and interspecies electron transfer in syntrophy in natural environments. EET also plays a critical role in microorganisms relevant to environmental biotechnology in metal-contaminated areas, metal corrosion, bioelectrochemical systems, and anaerobic digesters. Geobacter species exist in a diversity of natural and artificial environments. One of the outstanding features of Geobacter species is the capability of direct EET with solid electron donors and acceptors including metals, electrodes, and other cells. Therefore, Geobacter species are pivotal in environmental biogeochemical cycles and biotechnology applications. Geobacter sulfurreducens, a representative Geobacter species, has been studied for the direct EET as a model microorganism. G. sulfurreducens employs electrically conductive pili (e-pili) and c-type cytochromes for the direct EET. The biological function and electronics applications of the e-pili have been reviewed recently and this review focuses on the cytochromes. Geobacter species have an unusually large number of cytochromes encoded in their genomes. Unlike most other microorganisms, Geobacter species localize multiple cytochromes in each subcellular fraction: outer membrane, periplasm, and inner membrane, as well as in the extracellular space, and differentially utilize these cytochromes for the EET with various electron donors and acceptors. Some of the cytochromes are functionally redundant. Thus, the EET in Geobacter is complicated. Geobacter coordinates the cytochromes with other cellular components in the elaborate EET system to flourish in the environment.


2017 ◽  
Vol 474 (5) ◽  
pp. 797-808 ◽  
Author(s):  
Ana P. Fernandes ◽  
Tiago C. Nunes ◽  
Catarina M. Paquete ◽  
Carlos A. Salgueiro

Geobacter bacteria usually prevail among other microorganisms in soils and sediments where Fe(III) reduction has a central role. This reduction is achieved by extracellular electron transfer (EET), where the electrons are exported from the interior of the cell to the surrounding environment. Periplasmic cytochromes play an important role in establishing an interface between inner and outer membrane electron transfer components. In addition, periplasmic cytochromes, in particular nanowire cytochromes that contain at least 12 haem groups, have been proposed to play a role in electron storage in conditions of an environmental lack of electron acceptors. Up to date, no redox partners have been identified in Geobacter sulfurreducens, and concomitantly, the EET and electron storage mechanisms remain unclear. In this work, NMR chemical shift perturbation measurements were used to probe for an interaction between the most abundant periplasmic cytochrome PpcA and the dodecahaem cytochrome GSU1996, one of the proposed nanowire cytochromes in G. sulfurreducens. The perturbations on the haem methyl signals of GSU1996 and PpcA showed that the proteins form a transient redox complex in an interface that involves haem groups from two different domains located at the C-terminal of GSU1996. Overall, the present study provides for the first time a clear evidence for an interaction between periplasmic cytochromes that might be relevant for the EET and electron storage pathways in G. sulfurreducens.


Sign in / Sign up

Export Citation Format

Share Document