scholarly journals Lipidation of Class IV CdiA Effector Proteins Promotes Target Cell Recognition during Contact-Dependent Growth Inhibition

mBio ◽  
2021 ◽  
Author(s):  
Tiffany M. Halvorsen ◽  
Fernando Garza-Sánchez ◽  
Zachary C. Ruhe ◽  
Nicholas L. Bartelli ◽  
Nicole A. Chan ◽  
...  

Contact-dependent growth inhibition (CDI) is a common form of interbacterial competition in which cells use CdiA effectors to deliver toxic proteins into their neighbors. CdiA recognizes target bacteria through specific receptor molecules on the cell surface.

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Allison M. Jones ◽  
Petra Virtanen ◽  
Disa Hammarlöf ◽  
William J. Allen ◽  
Ian Collinson ◽  
...  

ABSTRACT The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins. IMPORTANCE Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. Mutations in genes coding for members of the Sec translocon render cells resistant to these CDI toxins by blocking their movement into and through target cell membranes. This work lays the foundation for understanding how CDI toxins interact with the protein export machinery and has direct relevance to development of new antibiotics that can penetrate bacterial cell envelopes.


2019 ◽  
Vol 201 (14) ◽  
Author(s):  
Jonathan P. Allen ◽  
Alan R. Hauser

ABSTRACTContact-dependent growth inhibition (CDI) systems are used in bacterial competition to hinder the growth of neighboring microbes. These systems utilize a two-partner secretion mechanism to display the CdiA exoprotein at the bacterial cell surface. CdiA forms a long filamentous stalk that facilitates binding to a target cell and delivery of a C-terminal toxin (CT) domain. This CT domain is processed and delivered into the cytoplasm of a target cell upon contact. CDI systems also encode a cognate immunity protein (CdiI) that protects siblings and resistant targeted cells from intoxication by high-affinity binding to the CT. CdiA CT domains vary among strains within a species, and many alleles encode enzymatic functions that target nucleic acids. This variation is thought to help drive diversity and adaptation within a species. CdiA diversity is well studied inEscherichia coliand several other bacteria, but little is known about the extent of this diversity inPseudomonas aeruginosa. The purpose of this review is to highlight the variability that exists in CDI systems ofP. aeruginosa. We show that this diversity is apparent even among strains isolated from a single geographical region, suggesting that CDI systems play an important role in the ecology ofP. aeruginosa.


Author(s):  
Kemin Tan ◽  
Parker M. Johnson ◽  
Lucy Stols ◽  
Bryan Boubion ◽  
William Eschenfeldt ◽  
...  

Contact-dependent growth inhibition (CDI) is an important mechanism of intercellular competition between neighboring Gram-negative bacteria. CDI systems encode large surface-exposed CdiA effector proteins that carry a variety of C-terminal toxin domains (CdiA-CTs). All CDI+bacteria also produce CdiI immunity proteins that specifically bind to the cognate CdiA-CT and neutralize its toxin activity to prevent auto-inhibition. Here, the X-ray crystal structure of a CdiI immunity protein fromNeisseria meningitidisMC58 is presented at 1.45 Å resolution. The CdiI protein has structural homology to the Whirly family of RNA-binding proteins, but appears to lack the characteristic nucleic acid-binding motif of this family. Sequence homology suggests that the cognate CdiA-CT is related to the eukaryotic EndoU family of RNA-processing enzymes. A homology model is presented of the CdiA-CT based on the structure of the XendoU nuclease fromXenopus laevis. Molecular-docking simulations predict that the CdiA-CT toxin active site is occluded upon binding to the CdiI immunity protein. Together, these observations suggest that the immunity protein neutralizes toxin activity by preventing access to RNA substrates.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Zachary C. Ruhe ◽  
Adam B. Wallace ◽  
David A. Low ◽  
Christopher S. Hayes

ABSTRACT Bacteria that express contact-dependent growth inhibition (CDI) systems outcompete siblings that lack immunity, suggesting that CDI mediates intercellular competition. To further explore the role of CDI in competition, we determined the target cell range of the CDIEC93 system from Escherichia coli EC93. The CdiAEC93 effector protein recognizes the widely conserved BamA protein as a receptor, yet E. coli EC93 does not inhibit other enterobacterial species. The predicted membrane topology of BamA indicates that three of its extracellular loops vary considerably between species, suggesting that loop heterogeneity may control CDI specificity. Consistent with this hypothesis, other enterobacteria are sensitized to CDIEC93 upon the expression of E. coli bamA and E. coli cells become CDIEC93 resistant when bamA is replaced with alleles from other species. Our data indicate that BamA loops 6 and 7 form the CdiAEC93-binding epitope and their variation between species restricts CDIEC93 target cell selection. Although BamA loops 6 and 7 vary dramatically between species, these regions are identical in hundreds of E. coli strains, suggesting that BamAEcoli and CdiAEC93 play a role in self-nonself discrimination. IMPORTANCE Contact-dependent growth inhibition (CDI) systems are widespread among Gram-negative bacteria, enabling them to bind to neighboring bacterial cells and deliver protein toxins that inhibit cell growth. In this study, we tested the role of CDI in interspecies competition using intestinal isolate Escherichia coli EC93 as an inhibitor cell model. Although E. coli EC93 inhibits different E. coli strains, other bacterial species from the intestine are completely resistant to CDI. We show that resistance is due to small variations in the CDI receptor that prevent other species from being recognized as target cells. CDI receptor interactions thus provide a mechanism by which bacteria can distinguish siblings and other close relatives (self) from more distant relatives or other species of bacteria (nonself). Our results provide a possible means by which antimicrobials could be directed to one or only a few related bacterial pathogens by using a specific receptor “zip code.”


2012 ◽  
Vol 26 (5) ◽  
pp. 515-525 ◽  
Author(s):  
E. J. Diner ◽  
C. M. Beck ◽  
J. S. Webb ◽  
D. A. Low ◽  
C. S. Hayes

PLoS Genetics ◽  
2011 ◽  
Vol 7 (8) ◽  
pp. e1002217 ◽  
Author(s):  
Stephen J. Poole ◽  
Elie J. Diner ◽  
Stephanie K. Aoki ◽  
Bruce A. Braaten ◽  
Claire t'Kint de Roodenbeke ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jeremy Guerin ◽  
Istvan Botos ◽  
Zijian Zhang ◽  
Karl Lundquist ◽  
James C Gumbart ◽  
...  

Bacterial contact-dependent growth inhibition (CDI) systems use a type Vb secretion mechanism to export large CdiA toxins across the outer membrane by dedicated outer membrane transporters called CdiB. Here, we report the first crystal structures of two CdiB transporters from Acinetobacter baumannii and Escherichia coli. CdiB transporters adopt a TpsB fold, containing a 16-stranded transmembrane β-barrel connected to two periplasmic domains. The lumen of the CdiB pore is occluded by an N-terminal α-helix and the conserved extracellular loop 6; these two elements adopt different conformations in the structures. We identified a conserved DxxG motif located on strand β1 that connects loop 6 through different networks of interactions. Structural modifications of DxxG induce rearrangement of extracellular loops and alter interactions with the N-terminal α-helix, preparing the system for α-helix ejection. Using structural biology, functional assays, and molecular dynamics simulations, we show how the barrel pore is primed for CdiA toxin secretion.


2019 ◽  
Vol 29 (21) ◽  
pp. 3622-3634.e5 ◽  
Author(s):  
Michael J. Bottery ◽  
Ioannis Passaris ◽  
Calvin Dytham ◽  
A. Jamie Wood ◽  
Marjan W. van der Woude

Sign in / Sign up

Export Citation Format

Share Document